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1.1     ABSTRACT 

12     SPONSORING  Ml LI T AR V    ACTIVITY 

Advanced Research Projects Agency 
1400 Wilson Boulevard 
Arlington.  Virginia    22209  

This technical report summarizes the image processing research activities per- 
formed by the University of Southern California during the period of 1 March 1974 
to 30 September 1974 under Contract No. F08606-72.C-0008 with the Advanced Re- 
search Projects Agency,  Information Processing Techniques Office. 

The research program,   entitled.     Image Processing Research,1» has as its pri- 
mary  purpose the analysis and development of techniques and systems for efficiently 
generating,  processing,  transmitting,   and displaying visual images and two dimen- 
sional data arrays.   Research is oriented toward digital processing and transmissic 
systems.    Five task areas are reported on: (l)Image Coding Projects: the investiga- 
tion of digital bandwidth reduction coding methods; (?.)Image RestoTition and Enhanc 
ment: the improvement of image fidelity and presentation format; (3) Image Data Ex- 
traction Protects: the recognition of objects within pictures and quantitative measure- 
ment of image features;(4)lmage Analysis Projects: the development of quantitative 
measures of image quality and analytic representation's) Image Processing Support 
Projects: development of image processing hardware and software support systems. 

14      Key words: Image Processing,   Digital Image Processing,  Image Coding, Image 
Enhancement,  Image Restoration,  Image Processing Software,   Image Processing 
Hardware,   Color Image Processing. 
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ABSTRACT 

This technical report summarizes the image processing re- 

search activities performed by the University of Southern California 

during the period of 1 March 1974 to 31 August 1974 under Contract 

No.   F08606-72-C-0008 with the Advanced Research Projects Agency, 

Information Processing Techniques Office. 

The research program,  entitled,  "Image Processing Research," 

has as its primary purpose the analysis and development of techniques 

and systems for efficiently generating,  processing, transmitting,  and 

displaying visual images and two dimensional data arrays.    Research 

is oriented toward digital processing and transmission systems.    Five 

task areas are reported on: (1) Image Coding Projects,  the investigation 

of digital bandwidth reduction coding methods; (2) Image Restoration and 

Enhancement Projects; the improvement of image fidelity and presentation 

format; (3) Image Data Extraction Projects; the recognition of objects 

within pictures and quantitative measurement of image features; (4) Image 

Analysis Projects,  the development of quantitative measures of image 

quality and analytic representation; (5) Image Processing Support Projects, 

development of image processing hardware and software support systems. 
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1.      Research Project Overview 

This report describes the progress and results of the University 

of Southern California image processing research study for the period of 

1 March 1974 to 31 August 1974.    The image processing research study 

has been subdivided into five projects: 

Image Coding Projects 

Image Restoration and Enhancement Projects 

Image Data Extraction Projects 

Image Analysis Projects 

Image Processing Support Projects 

In image coding the orientation of the research is toward the development 

of digital image coding systems that represent monochrome and color im- 

ages with a minimal number of code bits.    Image restoration is the task 

of improving the fidelity of an image in the sense of compensating for im- 

age degradations.    In image enhancement, picture manipulation processes 

are performed to provide a more subjectively pleasing image or to convert 

the image to a form more amenable to human or machine analysis.    The 

objectives of the image data extraction projects are the registration of ixn- 

ages,  detection of objects within pictures and measurements of image fea- 

tures.    The image analysis projects comprise the background research ef- 

fort into the basic structure of images in order to develop meaningful quan- 

titative characterizations of an image.    Finally, the image support projects 

include research on image processing computer languages and the develop- 

ment of experimental equipment for the sensing, processing,  and display of 

images. 

The next section of this report summarizes some of the ic^earch 

project activities during the past six months.    Sections 3 to 7 describe the 

research effort on the projects listed above during the reporting period. 

A capsule description of the physical facilities of the USC Image Proces- 

sing is contained in Section 8.    Section 9 is a list of publications by project 

members. 

-1. 
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2,      Research Project Activities 

Significant research project activities of the past six months are 

summarized below: 

Summer Short Courses.    One of the vehicles for the transfer of ARPA spon- 

sored image processing research technology to the Federal and industrial 

connmunities has been through intensive one and two week short courses. 

For the past four years the University has offered a one week Summer 

short course in Mathematical Pattern Recognition and a two" week course 

in Digital Image Processing.    In addition, this Summer,  a third short 

course of one week duration was initiated on Optical Processing.    The 

alumni of these courses now numbers in the hundreds. 

Picture Coding Symposium.   Professor's William K.  Pratt, Ali Habibi, 

and Werner Frei attended the Picture Coding Symposium held in Goslar, 

West Germany on 26-28 August,   1974.    Approximately 150 persons from 

throughout the free world attended the meeting which was devoted to ses- 

sions on: human observer characteristics,  intraframe image coding, inter- 

frame image coding,   color image coding,  and multi-spectral data coding. 

At the conference a contest was held to choose the best algorithms for pic- 

ture coding developed during the past 18 months.    Dr. Ali Habibi of USC 

was awarded a prize for the best coding algorithm for monochrome image 

coding with 1. 0 bits/pixel. 

Special Issues.    During the past six months two special issues relating to 

image processing were published.    Professor Harry C. Andrews of USC 

was editor of the IEEE Computer journal May 1974 special issue on "Com- 

puter Image Processing."   The Society of Photo-Optical Instrumentation 

Engineers devoted its May 1974 issue of Optical Engineering to optical and 

digital image processing under the editorship of Professor Alexander A. 

Saw-huk of USC. 

MdMiMMMlMlMi 
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3.   Image Coding   Projects 

The effort  in image coding is directed toward  the research and 

development of image coding   systems providing  a transmission bit rate 

reduction  and tolerance to channel   errors.     Coding systems are under 

investigation for:   monochrome and  color imagery: slow scan  and real 

time  television; and  information preserving   and controlled fidelity 

operation.     Results of this research study during  the past   six months 

are   summarized here and presented in detail in subsequent sections. 

The first report concerns a performance study of several 

adaptive linear predictive image  coding systems.     One   such system 

which adaptivelv codes by DPCM or deltamodulation dependent upon 

picture quality has been found to provide  high fidelity coding down to 

about   2. 0 bits/pixel. 

The  next report describes an application of Hadamard and Slant 

transforms  to  interframe image coding.    Good results are obtained at 

an average  of much  less than one bit/pixel. 

In the final report simulation results  are given tor transform 

coding   spectrum interpolation  in which receiver post-processing is 

employed to reduce quantization  error effects on transform coefficients. 

Reduction in mean square error of about 30% can bt  obtained by this 

technique. 

3. 1   Adaptive Dual Mode DPCM/Deltamodulation Image Coding 
Techniques 

William K.   Pratt 

Standard one  bit per sample deltamodulation provides a consider- 

able bandwidth   reduction,  but suffers from the  complementary problems 

of image granularity in smooth areas   of an  image and slope overload in 

image regions  of rapid brightness change.    These problems may be 

alleviated by quantizing the  difference signal with more  levels as in 3  bit 

per sample   DPCM,  but of course,   the bandwidth reduction is   sacrificed. 

A compromise technique has  been investigated  in which the image coder 

-3- 
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operates in a dual mode: DPCM in regions of high image activity and 

deltamodulation in regions of low activity. The switch between modes 

is performed adaptively based upon tne relative  image activity. 

In  a basic deltamodulation image   coding system  a prediction of 

the next pixel to be scanned is made  based upon the previously   scanned 

pixel.    The difference between the actual pixel  value and its estimate is 

quantized to two levels  and transmitted as a binary pulse (one bit pixel 

code).    Figures la to 1c contain computer simulation  photographs of 

deltamodulation coded pictures for three quantization levels   'q =5%,  10%, 

20%) and a previous pixel weighting of  90%.    The tradeoff between slope 

overload error and granularity error is readily apparent from the photo- 

graphs. 

With DPCM encoding the difference signal  between  a scanned 

pixel and its previous pixel  estimate is quantized to  8 levels   '3 bit/pixel 

code)  which are nonlinearly spaced to minimize quantization error.    Fig ir? 

Id   contains an example of DPCM coding when the first threshold  level is 

set at 2. 5%  full scale and a 90% previous pixel weighting is employed. 

The resultant image quality is satisfactory for  most applications. 

One  possibility for reducing the bit rate requirement of DPCM is 

to employ a  dual mode  coder which switches from DPCM to deltamodulation 

in  regions of nearly constant grey level and   from deltamodulation to DPCM 

in  edge regions.    A   simple algorithm  for the switch is  as follows: 

(a.) Switch  from deltamodulation to DPCM if three sequential delta 

bits  are of the same sign 

(b. ) Switch from DPCM to deltamodulation if DPCM quantizer   shifts 

from smallest positive to smallest negative quantization level 

or vice versa. 

By adjusting the quantization levels for the DPCM and deltamodulation 

quantizers it is possible to control the relative time division between 

states.     One of the major  advantages  of the encoder is that the  decoding 

may be performed  at the receiver from the transmitted   code without any 

explicit code bits required to designate the     mode.    Figure le contains 

a coded image using tnis algorithm coded at about   2.0 bits/pixel.    In 

regions of little image activity,   image quality is good,  but mode transition 
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errors are   apparent near edges. 

Frei,   Schindler,  and Velliger  [l] have   suggested a dual mode 

system in which the original image   is oversampled by a  factor of three 

to permit   a rapid  detection of the delta to DPCM mode  change.     The 

coding   logic is as follows: 

(a.) Switch from delatamodulation to DPCM: 

delta mode  quar.ization levels 

sample   1 sample Z sample   3 Code 

+q +q 

+q *i 

+q -q 

-q *J 

-q -q 

-q +q 

+q -q 

-q -q 

+q i 

-q i 

+q ! 

+q 1 

+q 0 

-q n 

-q o 

-q o 

After three sequential delta "ones" insert a "zero" marker bit and 

after three sequential delta "zeros" insert a "one" marker bit. 

(b.) Switch  from  DPCM to deltamodulation if DPCM quantizer   shifts 

from smallest positive to smallest negative quantization level or 

vice versa. 

Figure 1 f contains a coded image for the oversampled dual mode 

coding   system for  coding at two bits per pixel.    The  oversampled dual 

mode   system is superior to the simple  dual mode   system described 

previously in terms  of picture quality,  however,  its implementation 

requirements are greater. 

In   summary,  the oversampled dual mode DPCM/deltamodulation 

image coding system has proven to provide  good quality coded images  at 

2.0  bits/pixel.     The disadvantage of the   coder  is the  additional complex- 

ity as compared to conventional   3 bit/sample   DPCM. 

.6- 
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3.2   Orthogonal Transform Coding of Moving Pictures 

Clifford Reader 

The efficiency of coding a sequence of moving pictures is   improved 

byr techniques of interframe coding which  partially lemove   redundancy 

between frames.     A   successful type of coding is that of conditiona1   update 

operating upon  the differences between successive frames.    Orthogonal 

transform techniques have been  applied to the conditional update process 

vith additional advantages over conventional  systems. 

Although interframe codii.^ may be very successful in   reducing 

the transmission   requirements for  moving picture signals,   the coderis 

usually complex and costly,   involving   in  expensive frame   memory.    The 

object of the orthogonal transform  conditional up-late coder is to  minimize 

terminal costs.    The coder performs a two stage process.     The first 

stage is  a conventional intraframe coder,   removing spatial redundancy 

from   single frames.    This orthogonal  transformation and block quan- 

tization is performed over sub-blocks  within the fran-e.    The second, 

interframe   coding stage,  then applies  conditional update  techniques to 

the differences  between successive  transformed and  quantized sub-blocks. 

This is simply achieved by setting a  threshold and updating a   sub-block if 

the energy of the  difference signal foi that sub-block  exceeds the  thres- 

hold.    A block diagram of the coder is sv.own in figure 1.    It is to be 

noted  that the  updating process  takes place with the  data from the new 

frame and not  the difference  information.    This is  done to avoid 

problems with   quantizing the   difference signal   which is derived from 

the nonlinear intraframe quantizer.    An advantage is that the memory  is 

refreshed with new data and not  an estimate of the new data.    This reduces 

the problem of multiplicative   error.     The principle advantage of the 
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interframe   coder is derived from the  use of intraframe  coded data. 

This data is thus presented at reduced rate and the memory  requirement 

of the   coder is reduced.    If the interframe coder produces a corrpres- 

sicn of M:l then the size of the de ays  must  be 1/256M frames (olus  a 

small amount to allow for the  difference   signal energy thresholding to 

take place)  and the memory size will be 1/M - 1/256M = 255/256M 

Frames.    The overall memory (storage)   requirement for the  coder is 

thus reduced by almost a factor of M compared  with the   requirement for 

conventional  coders. 

Quantitative analysis of the   interframe  error  is hampered by the 

nonlinearity of the  updating process.    Qualitatively,    several observa- 

tions  may be made.    In the  absence  of noise,   a  threshold of zero would 

result in the transmission of all   sub-blocks posessing a finite difference 

signal energy and the interframe error would be zero.     If the  thres- 

hold were then raised,   those sub-blocks  which contained the least 

amount of motion would not be updated.    Since the difference signal 

energy is closely related to the mean squared error made when a sub- 

block is  not updated,   it is reasonable to assume that  the interframe error 

should be proportional to some function of the update threshold.    In  the 

presence of noise,  this  effect will be modified.    The interframe error 

was examined for five pairs of frames   containing different  amounts of 

motion.    Figure 2 shows mean squared error vs update threshold.    The 

curves of figure 3 show the corresponding compression of data achieved 

with thresholding.    The interframe  error curve  for medium motion is 

presented in full detail in figure 4.     Three regions may  be discernfd 

along  the curve.     For the threshold   set less than about  1.0,  all sub- 

blocks which contain motion will be updated together with some of the 

sub-blocks which do not contain motion,  depending upon the magnitude 

of their noise  variance.    For a  threshold set over the range 1.0  to 4.0 

approximately,  all sub-blocks  which contain motion will be updated  except 

those sub-blocks  which contain very little  motion  (for example,  just a 

few pixels in one  corner have changed) plus those sub-blocks which contain 

no  motion,  but have the largest noise  variance.    For a threshold greater 

-9- 
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Figure 3. 2-3.    Graph of Interframe Sample Reduction 
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than about 4. 0,   only those sub-blocks containing the greatest  amount 

of motion will be  updated.    This region of the wave is approximated 

by the straight line having the equation 

e    =0. 74  T -   1.63 

2 
wher»-  e    is the mean squared error  and T is the update threshold. 

This line does not fit the curves   for other degrees o.r motion very well 

but must be taken as an overall measure  of the   error of the system 

assuming an  average medium motion. 

The  curves for interframe mean square error and bit rate 

compression indicate the behavior of the system towards the different 

degrees of motion.     The error curves for medium,   fast and very fast 

motion are reasonably close to each  other throughout the range of thres- 

holds  presented while the corresponding bit rate compression curves 

are  nearly linear and vary from each other only in slope.    In   contrast, 

the curves for slow and very   slow motion differ in being nonlinear and 

not aligned to the   curves for   faster motion.     This effect is caused by the 

discreteness of the sub-block conditional updating  mechanism,  which 

becomes prominent when only a   few sub-blocks   contain motion and many 

of those sub-blocks  overlap stationary areas.    The results for very 

slow motion are further modified by noise which interacts with the low 

difference signal  energy,  preventing correct updating. 

The data available  for experiments consisted of five pairs of 

frames representing a range  of levels of activity and a set of four frames 

containing very active motion.     These frames  were individually  coded 

by  orthogonal  transformation and block quantization.    The  Hadamard 

transform was used for the five  pairs of frames with quantization to 3.0 

bits per pixel.    The Slant transform was used for  the sequence of four 

frames with rates of 3. 0 and I. 5  bits per pixel.    The result   af interframe 

coding the five pairs of intraframe coded  frames,  with a threshold of 4.0 

is   shown in  figure 5.    No discrete errors  are visible  as a result of the 

interframe coding although the images are a little  blurred  by the intra- 

frame coding.    Raising the threshold to 9.0,   figure  > does  introduce 

-13. 
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visible error 'although this is partially  masked by the darkhair of the 

subject).    The discrete  error appears  at the edges of sub-blocks which 

were   incorrectly updated.    Two  examples in   frame number 9123 are 

the vertical edge   visible or the subjects left hair edge and  the L   shaped 

nick in the edge of the hair to the right  of and above the subject's left 

eye.     Figure 7 shows the results obtained when   coding the   sequence of 

four frames and compares the   effect of intraframe coding at 3.0 bits 

per pixel 'part (i))   and 1. 5 bits per pirel   fpart{ii)).     No errors are 

visible in the results of part   (i) but a   small number may be discerned 

in the second set of  results.    The reason for these errors is that the 

higher  intraframe compression  to 1. 5 bits per  pixel lowers the differ- 

ence signal energy.     This is   reflected in the higher interframe com- 

pression achieved with these   results.    A slightly lower threshold would 

alleviate the problem.    The results also show that for the limited 

sequence of four frames no noise build up is evident. 

The limited results indicate that the   scheme is an effective way 

of coding moving pictures - the transmission rate  is greatly reduced 

while the coder offers economy over conventional interframe coders.    It 

is not possible to  predict the   effect of the sub-block  update mechanism 

in   real time   - it   is possible  that the sub-block structure may become 

visible.     Lack of suitable data has precluded   study of this problem.    The 

coder does produce a non-uniform data  rate.    Studies of the output data 

indicate that the bit stream may be smoothed by a buffer or handled by 

buffer sharing techniques with at least the same  efficiency  as that 

obtained with conventional conditional update   coders. 

3.3    Quantization Error Reduction  for Image Coding 

Michael N.   Huhns 

Quantization is the process  of representing   continuously varying 

quantities by discrete intervals.     This process   is nonlinear and some  of 

the information  about the original data is irretrievably lost.     The usual 

restoration  procedure is to choose  the midpoints of each quantization 

interval as the estimated values of the original data.    However if it is 

known that the   original data are correlated and are non-uniformly dis- 
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tributed,  then improved restorations are  possible using  this information. 

As shown in a previous report LlJ ,   minimum mean square error estimates 

of correlated data require the solution  of the  following equation 

/   2£P(*)  4* 
x = E{ xjx e D}=   -^  

/   p(x) dx 

(1) 

where x  is the n-dimensional variable to be quantized,   D is the particular 

region of n-space into which x  is quantized,  and p(x) is the probability 

density function of x.   A partial solution to this equation ho.    been obtained 

for data which have a jointly  gaussian probability  distribution.    This 

solution has now been applied to the restoration of quantized one-dimensional 

random signals and two-dimensional transform domain zonal quantized 

images.     The results reveal  a decrease  in mean square error in all cases. 

However,   in   spite of the error reduction,   some  images exhibit a degrad- 

ation  in subjective quality after   restoration.    Hence a nonlinear error 

criterion based on the human visual system and derived by Mannos  and 

Sakrison [2]has been used in place  of the mean square error function. 

Under this criterion a subjective image improvement as well  as a 

numerical error reduction are obtained. 

To demonstrate the utility of this restoration procedure,  a randomly 

generated gaussian Markov signal has been quantized and restored.    The 

results are   shewn in figure 1.     A two bit per sample  Max quantization 

scheme is employed to obtain the quantized  approximation to the original 

signal.    Using this quantized   signal and the statistical knowledge about 

the original signal as inputs to the nonlinear estimator,   the restoration 

decreases the mean   square error by 33%.    The average improvement in 

mean square error as a function of quantizing bit assignment for different 

correlation   coefficients is shown in  figure 2.    It can be seen from this 

graph that,as the amount of correlation in the Markov process approaches 

zero,  then the restoration provides no error improvement.    There  is also 

18- 

MHMMHÜMHIMii lit' WffcijMiMlM-r    I - ■  ■■■■■■IIMIaiM    — 



a 
a 
be 

in 
> o 

M u 

i 
0 

-o 
G 
fi 

•t v 
N 

a 

o 

15 
O 

01 
v 

Pi 

CO 

CO 

19- 

■ ■-          ->■----—^—^^J»^a.aa-^. 



r ^ir" " ■    ■ -        «■"^^■^mp« 

CD ID CM 

O oo 
ii 

CO 
1- z 
UJ 
o 

*-* LL 
CD LJ_ 

Ul 
LL O 
O O 

(/) z 
^ o 
O h- q < 
_i _l 
OG UJ cr> 

? o 
d 
II 

Q CJ Q. 

UJ 1 
cr S 
o / 
\- / 
co / 
LU / 
Q: 1 f 
c^ / 
UJ 
_i \ 
CL \ i 
^ V 
< \ 
CO > 

1 1 

n) 
C 

•rt 

> 
o 
j 
u 
(6 

T3 
V 
N 

•H 

c 

u 
o 

c 
4) 

E 
> 
o 
u 

I 
H 

I 
CO 

h 

^O sO .O ^O 
o^ 0^ o^ o^ 
o o o o 
^" ro OJ — 

N0llDna3d d0dd3 3dVnOS NV31AI 

20. 

— , _ MM^ftBriMMCM in  I —.aMMaa- 



wz= 

no  improvement as the  number  of quantizing bits becomes large and the 

differences between the original   signal and the quantized   signal vanish. 

Thus the restoration procedure represents a viable restoration technique 

when the number of quantizing bits  are small and the input signals to the 

quantiser are correlated. 

These conditions are satisfied by  the zonal transform coding 

technique  for images.    In this method the transform   samples have a 

gaussian distribution:    each is the sum of a large number of random 

variables   so that the central limit theorem can be invoked.    Now these 

transform samples are typically quantized according to a bit assignment 

such as  the one shown below. 

8 6 5 5 44443333 3 333 
5 4 3 3 222222222222 
4 3 2 2 11111111111] 
4 3 2 2 111111111111 
4 2 1 1 11100000000 
4 2 1 111100000000 
4 2 1 111100000000 
4 2 1 111100000000 
3 2 1 000000000000 
3 2 1 000000000000 
3 2 1 000000000000 
3 2 1 000000000000 
3 2 1 000 000000000 
3 2 1 000000000000 
3 2 1 000000000000 
3 2 1 000000000000 

The restoration technique must be applied   recursively to these samples 

since  it is only capable of restoring one sample  at a time.    The  current 

best estimates of the remaining   samples are then used to obtain the 

estimate of the sample being restored.    This is repeated for each of the 

samples  in turn and then the entire  procedure is repeated until the 

estimates converge.    This convergence has  been found to be rapid and, 

in  most cases,  one iteration   is   sufficient. 

The  above procedure has been applied to the   images in figure 3 b 

and 3d.      Figure   3b has been coded with an  average   of one bit per pixel 
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by  using a Haar transform in 16  x 16 blocks,  a   zonal coding bit 

assignment     and a Max quantizer.     For the  quantization and subsequent 

restoration,  the original image samples are assumed to  arise from a 

Markov source.    Figure 3c is the restored version of this image,  uHll«- 

ing one iteration of the estimation procedure.     The mean square error 

is reduced by 10% as a result of the restoration.    Figures 3d and 3e, 

respectively, have been quantized to 0. 5 bits and restored by means of the 

above technique.     A reduction  of 19% in mean square error is obtained in 

this case.    Subjectively,  tha restored  images appear much less noisy 

than the  quantized images  but more  blurred,  as is very evident in com- 

paring figures  4b and 4c.    Hence  an error measure is required in which 

numerical results match subjective results. 

This has been provided by modeling the error measure  after the 

human visual system.    It has been found that the human  visual system  is 

sensitive to approximately the  cube root  of incident light intensities.    It 

is  also most sensitive to middle spatial frequencies near eight cycles per 

degree.    Hence to apply this error measure,   an image is processed 

according to the block diagram in figure 5.     The (i, j)th  component of the 

filter function is chosen to be 

1.1. T.. = (. 05 + . 1L525 r)  exp { -(. 07125 r)1' '} (3) 

where 

r =(i    + j  ) (4) 

Figures 4d and 4e show the results of this procedure for a Hadamard 

transform,   with and without the  restoration step,   respectively.    "'nere 

are both subjective and  numerical error  improvements after  restoration. 

The restoration process has also been applied to a color coding 

experiment.    In this  experiment a color image  is transformed  ^o the 

YIQ coordinate system and then quantized according to the  bit assignment 

indicated on the next page for  a typical block of four pixels. 
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(a)   O riginal Image   8 bits/pixel 

6    ^-• ■•«.■     ; 

(b)   Zonal Haar Quantized (c)   Zonal Haar Restored 

tli-    ~. ' 

4*'*-  ^ k     »' 
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(d)   Visual Hadamard Quantized (e)   Visual Hadamard Restored 

Figure 3. 3-4.      Restoration of 0. 5 bit/pixel transform coded images for 
two different error criteria. 
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Fach pixel   is hence  coded with  an  average  of nine bits.     Quantiration 

restoration provides a decrease  of 42% in mean square error  in  this 

case and an   improvement in subjective quality. 

Thus  data which are correlated  and  which have been coarsely 

quantized are amenable to being   restored by the techniques outlined above. 

By choosing a suitable error criterion,   zonal transform  coded images 

can  be subjectively and analytically improved so that they  more faithfully 

reproduce the details  of an original image.     Further work  is  expected 

to  extend  the restoration technique to   DPCM and  delta modulation coded 

images. 
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4.      Image Restoration and Enhancement 

Image restoration and image enhancement are two classifications 

of image improvement methods.    Image restoration techniques seek to 

reconstruct or recreate an image to the form it would have had if it had 

not been degraded by some physical imaging system.    Image enhance- 

ment techniques have two major purposes: improvement in the visual 

quality of a picture to a human viewer; and manipulation of a picture for 

more efficient processing and data extraction by a machine.    Research 

in both areas during the past six months is described below. 

The first report addresses the general problem of restoration for 

space variant aberrations.    Methods are presented for astigmatism res- 

toration and restoration methods for other types of degradation are out- 
lined. 

The three reports following are concerned with pseudoinverse 

techniques of image restoration.    In the first of the series a method is 

presented for performing restoration in the eigenspace of the degradation 

in order to avoid computational errors.    The second paper describes 

a restoration technique which seeks to ensure that the estimated image 

pixel values are neither negative nor greater than an upper bound.    In 

the third paper a computational algorithm for pseudoinver&e restoration 

is developed.    With this algorithm computation is reduced significantly 

compared to conventional methods and numerical stability is also improved. 

The next paper discusses the use of spline function interpolation 

in the development of an image restoration algorithm,  and in the next 

paper the effects of non-uniform sampling of a blurred image are analyzed. 

It is shown that proper non-uniform sampling actually can improve the qual- 

ity of an image restoration. 

Finally,  a method of histogram exponentiation for image detail 

enhancement is described.    With this process a grey level mapping is 

performed to produce an output image whose histogram follows an 

exponential density. 
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4.1   Restoration for Space-Variant Aberrations 

Alexander A.   Sawchuk and M.   Javad   Peyrovian 

Several previous publications have  detailed  the difficulty of 

achieving   image restoration for the most general  case when the linear 

degrading system is   space-variant.    By systematically  examining the 

sources of degradation  and using  all available  a priori  knowledge,   con- 

siderable   simplificatic    of the problem can  be  achieved [ 1, 5j . 

An example of restoration for images of 100 x 100 pixels degraded 

by third -order astigmatic aberrations has been previously  described, 

and descriptions of space-variant point-spread functions (SVPSF) have 

been given [ 1, 5] .     Recent progress in this area has permitted images 

with astigmatism  of up to 128 x  128 pixels in   size to  be restored on the 

USC 360/44 computer system using  an SVD technique.     With the 

addition of memory and a faster  processor   now underway,  these capa- 

bilities should be increased in the near future.     Another improvement in 

the simulation  and testing  of the astigmatism algorithm has resulted 

from the use of an improved  quadrature  formula to evaluate the   space- 

variant integral 

J'(X1'X2) =//h(xrX2'Ul'U2)(>(ul'U2) duldu2 (1) 

describing the  degradation process.    Here   0(u ,u  ) and   »P (x , x  ) are 

the object and  image,   respectively,  and h(x , x_, u , u  ) is the  degrading 

SVPSF.     The new quadrature formula  involves the  expansion  of 

h(x , x  , u , u  ) into spline functions,  thus eliminating  artifacts in the 

digital simulation  of the  imaging   system and providing  a better  test 

of the restoration method. 

A test of space-variant restoration for the most difficult 

third-order aberrations of combined astigmatism and curvature of field 

is now in process.    The theory behind  the technique is an extension of 

the method for  astigmatism alone.     The  general degradation  of eq. (1) 

• 28- 
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is   first rewritten with a polar   coordinate transformation in the form 

J{Xr' V   =fj   h(Xr' V V V ^^r' "^ dUrduf 
(2) 

where (x  ,x„)  and u  ,u0) are  image and  object polar coordinate vari- 
r     fl r     P 

ables.     inis operation is digitally performed on the degraded  image by- 

rearranging samples in  memory.     A simplification results because  of 

the circular symmetry of many optical systems.    In this case,  the system 

aberration function are 

x -u    = (2C+D) u  e    cos eQ r     r r r ö 
(3a) 

-lr xn-u0 =tan    [Du  e   sin e.fl + (2C+D) u  e   cos e ] =g(u  ) (3b) 
on- rr o rr o r 

where C  and D are the astigmatism and curvature  of field  coefficients 

respectively,  and e   and €L are exit pupil  variables.     The SVPSF's 
r b 

derived from eq. (3)   and limiting cases of C   = 0 and D =0 can be easily 

derived [iJ . 

By observing  that the radial blur  of eq. (3a) is a  function of  radial 

coordinates only,  and that the 9 blur of eq. (3b)   is  a slowly varying 

function  g(u  ),  the next step in restoration is to  rewrite eq. (2) as 

J{XTtXJ   =//h(Xr'VXe-Ue'g(Ur))<3(Ur'UB)  dUrdUf (4) 

to emphasize the dependence.    If D  =0 in  eq. (3) the degradation is pure 

astigmatism without curvature of field and the b\ur is entirely radial 

with no blurring in 9 . 

Defining a Fourier transform of J(x  ,x.) in the xfl variable by 

A: I  A)  = / ^(xr,x0) exp(-j2nXxe )dxe (5) 
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the transform  of both sides of eq. (4) is taken to obtain 

•^(x  , X) =//(3(u  ,u  )h(x  ,u   ,\,g(u   )) expi-iZnXu-ldu^du 
f J J T      " T       T r 00] 

-00 

(6) 

where h  is the transform of h in x0.    Grouping  terms containing  u0 

on the right side of eq. (6) enables a transform in this variable to 

be evaluated.    The resulting transformed  function   i3(u  , X)   is given 
r 

by 

0(ur, X) =f(yivr. UQ) exp(-j2nXue)duf (7) 

and the reduced system equatiin obtained from   eq. (4) is 

-P(x ,X)  =fh{x  ,u ,X) 0{u  ,X)du 
r y i      r r r (8) 

where 

h(x  ,u  .X) = h(x  ,u  , X, g(u  )) 
r     r r     r r (9) 

is   rewritten as a function  of three variables to   show explicit dependence. 

This derivation shows the procedure to be used for the astig- 

matism and curvature of field restoration.    Following  a polar coordinate 

transformation,  a Fourier transform in x   as expressed by eq. (5)  is 
o 

performed to partially decouple  9 blur as a   slowly varying  function of 

g(u  ).    The   reduced system is then  given by eq. (8),   and an estimate 

of    0(u   , X)   is produced by singular-value decomposition (SVD) techniques 

[ l] for each separate   X by techniques   similar to that used for astig- 

matism alone.     Efforts will be made to reduce  the computational effort 

required in this part by using the known variation  of h(x ,u  ,>)  with   X. 
_ r     r 

After the entire ^u     X) has   been obtained,  a > eries of one-dimensional r 
inverse transforms in x is taken to  find <3(u  ,u-),   and an inverse polar 

r     9 r 

coordinate distortion is used to get (3(u , u  ) as  the final restored object. 
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This procedure,  while requiring large capabilities in computing and 

storage,   is the only method for doing restoration on images of even 

moderate size.   The  general  four-dimensional   space-variant blur of 

eq. (1) is effectively reduced to a set of space-variant two-dimensional 

problems  whose point-spread functions depend  in a well-behaved way on 

> . 

Following  tests of this procedure,   future work on this problem 

will include modifications for  noisy data  and an analysis of  sampling 

problems and approximations in performing a continue as space-variant 

restoration by computer.    The analysis as presented is  for a  general 

aperture,  although additional simplification  may be possible for other 

specialized aperture shapes. 
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4.2   Image Restoration in the Eigenspace of the Degradation 

Harry  C.  Andrews and Monty Adler 

It has recently been noted that there are  certain mathematical 

properties associated with point spread function blur matrices that 

make  digital image restoration extremely attractive   in the eigenspace 

of the degradation  [ l] .     Consider the separable space variant imaging 

model of 

G =A F B (1) 

where G  is the matrix of available  image data points and F is  the 

array of object data points which are of interest for  estimation.     Usually 

both A and B, the column and  row blur  matrices respectively,  are 

nearly singular.    Penrose [ 2]   investigated this model,  without regard 

to  imaging systems,  and suggested the pseudoinverse restoration which 

provides  an estimate  of the object as 

~ +        + 
I = A G B (2) 

where A     and B     are Moore-?enrose pseudoinverses respectively 

[ 3J.     The blur matrices A and B are componentwise positive  and 

experimentally appear to be oscillatory [ 4, 5] .    The   oscillatory property 

implies that the eigenvectors  associated with decreasingly   smaller 

eignvalues have increasingly  larger   zero crossings.    Examination of the 

pseudoinverse solution of eq. (2) in eigenspace,   reveals  that the   solution 

can be cast in the form 

+    T T    T 
F = V    A  U   GV   A   V: 
~     —a-a-a — b—b~b (3) 

where 

and 

A = U  A V 
—     - a-a— a (4a) 

i^W (4b) 
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All matrices are orthogonal with  A   and _A.    being diagonal.    The 

matrices^   and_/\,   are also diagonal  with non-zero entries being   re- 

ciprocals  of the entries   of_A   andj\   respectively,   except for zeros placed 

on the diagonals of^    and  A    for small (approximately zero) diagonal 

entries of_A    and ^ .     By noting  that 

F =V  A  aAU 
i—b — 

T   .T..T 
b 

(5) 

where 

a = U     GV, 
-    -a  —b 

(6) 

it is found that the a matrix   is the image G  represented in the eigenspace 

of A and   B.    Because of the oscillatory properties of A and B,   con- 

tributions to  F associated with large   X.       coefficients have correspond- 

ingly  large   zero crossing  eigenvectors.    These eigenvectors  are then 

correlated with the image G which tends to be slowly varying; and as 

such,  the  correlation tends to zero.    But those eigenvalues of least  con- 

fidence,   due to uncorrelated  noise and  computational  error,   are 

associated with  eigenimages of many sign  changes, which in turn correlate 

to  zero with G.      Consequently one encounters  the happy circumstance 

of computational error not being as critical as could be as a result of 

effective   zero  correlation of the image G   with the corresponding com- 

putationally questionable eigenvalued «igenimages.     Thus greater success 

can be anticipated with this pseudoinverse approach for image  restoration 

than for   restoration of signals with  correspondingly higher frequency 

content.      Restoration algorithms baaed upon these observations  are 

currently under investigation. 
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4.3    Pseudoinverse  Method of Bounded Image Restoration 

Harry C.   Andrews and Monty Adler 

The   space variant separable imaging equation given by 

G ^ A FB (1) 

has  been investigated from a restoration  viewpoint in previous reports. 

With A and   B being the column and  row blurs of the object   F respectively, 

the image G  will  be used as a means of estimating F.    Traditional 

solutions to this problem utilize the pseudoinverse in which 

+      + 
E=A.GB (2) 

and A    and B   are pseudoinverses of A and   B respectively.  Usually the 

blur matrices are nearly singular.     Unfortunately,  although the 

pseudoinverse   solution provides the best estimate of F in a least squares 

sense for a minimum norm F,   (i.e.   F minimizes   l| F 1| ), the  estimate 

does not take advantage of all a priori knowledge.    For example, the 

solution ignores the fact that the elements of F are intensities,  which 

cannot go negative   (therefore positive   restoration), and which cannot 

exceed some physically realizable total light energy (therefore bounded 

restoration).    To utilize the positive bounded restoration model the 

pseudoinverse solution of eq. (2)   is suggested as an initial condition to 

a nonlinear  programming algorithm to guarantee positivity and upper 

34- 

^^■■iMHala-a 



^^^^^^^^^^^ 

boundness.      Towards this end,   consider the  pseudoinverse solution 

.+     T +     T 
F = V  A   U    G  VL \   U 
—    — a~a —a b —b — b 

(3) 

where 

A =U    A   V 
—   —a—a —a 

(4a) 

and 

s^bA^b (4b) 

The objective function for normalization purposes will be to minimize 
ii       •II 2 * 
||G-G||      subject to the  bounded   restoration constraint on F.     Thus 

W =      G-G (5a) 

w - I!A(F-F) B (5b) 

W^llAll2 llF-Fll2 llBll2 (6) 

Therefore,   for analysis purposes one  can choose to minimize || F-F ||   . 

However,   since the pseudoinverse is simply being used as  an initial 

condition and since the eigenspace of the  degradation is  a useful  domain 

for restoration processing,  the variables of optimization are   restricted 

to be  diagonal in the eigenspace  domain.    Thus the estimate 

A                   +     T + T 
F = V    6   A    Ü    G VA    fi   U 
—     —a-a—a   ~a br-b—b — b 

(7) 

is  found by  adjusting the ^   diagonal matrices suchthat   llF-Fll     is 

minimized and £ is componentwise  positive  and bounded.    This reduces 
2 

the restoration problem to a 2K variable  problem with N    positive 

bounded boundary constraints.    Here K is the number of non zero 
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eigenvalues    retained in the F  estimate.     Since the solution is in the 

eigenspace domain,  the effect of each 6   variable is felt  throughout the 

entire estimated object F,  and as such is much more effective than 
A 

simply constraining a component entry (pixel) of F itself.     A Fiacco 

and McCormick [ l] programming algorithm has been utilized to  adjust 

the weights  in degradation  eigenspace to  obtain positive bounded 

restorations with sorre success.    While this work  is   still in progress, 

it appears that convergence is  very rapid due to the pseudoinverse 

starting point whereby it is  meant that an iterative  pseudoinversion 

technique is developed to obtain  F     until the  positive bounded con- 

straints are violated at which time  the nonlinear programming  algorithm 

ia  call to  correct for the near singularity in the K      pseudoinverse 

solution. 

Reference 

i.       Fiacco, A. V.  and     G. P.  McCormick (1968)    Nonlinear Program- 
ming; Sequential Unconstrained Minimization  Techniques,   Wiley, 
New York,  New York. 

4. 4   A Fast Pseudoinverse Image Restoration Algorithm 

William K.  Pratt and  Faramarz Bavarian 

It is often possible to model an image degradation process by the 

vector  equation 

g = B f + n (1) 

where g  denotes a column scanned  M x 1 vector of physical samples of 

the blurred image; ^ is an N x 1  vector of column   scanned points in  the 

ideal image field,   B is an M x N blur operator matrix representing 

a convolutional blur; and n denotes  an M x 1 vector of observation noise 

or uncertainty.    For this model,  the ideal image vector can be estimated 

by pre-multiplication of the observation by  the generalized inverse, 

B , of the blur matrix,  Thut*, 
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f = B     g 

where B'   is an  N X  M matrix that can  be computed by 

T     -1     T 
B    = (B   B)      B 

if B is of full column rank,   or  can be   computed by 

2) 

(3a) 

T T -1 
B    = B     (BB   ) (3b) 

if B is   of full row rank.     The solution  of eq. (2)   is a  minimum mean 

square error,   minimum norm estimate.    There are  two major difficulties 

with pseudoinverse restoration:    if the noise  level is high,  the solution 

may be unstable as a result of the usual ill conditioning of the  blur 

matrix; and,  computation of the  generalized inverse  and restoration by 

eq. (2) is usually a  large task.    The former problem  can be  avoided by 

restoration  constraints; consideration  is given here to  efficient 

computational techniques for pseudoinverse   restoration. 

Fast Pseudoinverse Algorithm.   As a simplification in the develop- 

ment  of the algorithm,  consideration will be initially limited to a one 

dimension,il model in which the ideal image   is   represented by quadrature 

points at its Wyquist   rate and  the blurred image is   sampled at the same 

rate.     Then,  let the impulse response  be represented by the L x 1 

vector h.     The blur  matrix of eq. (1) then assumes the form 

h(L)    .      .      .     h(l)  0 

0      h(L)   .      .     .     h(l) 

0 

0 

0    h(L) h(l) 

(4) 

In this case the number of ideal   image points and the  number of observed 

image samples are related by 

• 37. I 
  -     ■'      ■■ i nmmtmatmmi 



N = M + L-l (5) 

Now,   let two vectors £_, and g      be  formed  by   selecting the center 

portions   of_f and g, respectively.    These truncated vectors  are obtained 

by  dropping L-l elements at each end  of the appropriate vector by the 

operations 

f    -«=2(K) 

-T   —N K =N-2(L-1) 

gT=S2 
(R) 
M 

R  =M-2(L-1) 

where 

S<K. 

L-l K 

-^K 

L-l 

K 

for J =   K + 2(L-1).    Figure la illustrates  the relationship of all vectors 

for N  = 9 original vector points,   M = 7  observations,  and an impulse 

response of length  L = 3. 

Suppose,  now that the data sequence f_  is  discretely convolved 

with the  impulse response sequence n  yielding the output sequence q 

as defined by the  vector equation 

a = i?lT (6) 
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(a) sampled continuous convolution 

IT 

o  o ^  ®  ®®   ®^ o  o 

(b) discrete convolution 

Figure 4.4-1.   Examples of one dimensional sampled continuous 

convolution and discrete convolution. 
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where 

D 

h{l)       0 

h(2)      h(l) 

• • 

h(L)     h(L-l) 

0 h{L) 

0 

h(l) 

(7) 

h(L) 

Figure lb  illustrates the relationships between the vector sequence for 

discrete  convolution.    An estimate  of f_    can be obtained by premultiplying 

the output vector ^by the generalized  inverse of D.    That is 

IT = JP a (8) 

Referring to figure 1,  it is observed that the elements of g     are 

identical to the center elements  of q.     Thus, 

while the remaining end elements differ in general.    Now,   let a matrix 

W be defined which operates on the physical   sample vector g to produce 

an approximation  to the output vector  q for  discrete convolution. 

q=   Wg 

The structure of W will be derived later.    Then,  an estimate  of fm - -T 

(a) 

is formed by 
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^   =   D    q =D     W  g (10) 

By this procedure an  estimate of the center  part of the   image vector 

f  can be obtained by use of the generalized inverse operator D  rather 

than the generalized  inverse   operator B   .    The advantages of the 

former procedure over the latter are that,   in the absence of noise,  the 

solution obtained with D    is unique and exact,   whereas there  are an 

infinite number of feasible solutions for the B model.    Also, with the 

D   operator,   it is possible to perform the restortion by Fourier  domain 

processing quite efficiently. 

Consideration will now be given to the structure of the weighting 

matrix W. The objective of weighting is to express the vector q in terms 

of the elements of the observation g.     For the example of figure 1, 

q{l) =   g(l) -  h(3)f(l) - h{2)f(2) 

q(2) = g(2) - h(3)f(2) 

q(m) ^ ^(m) 2<m<M-2 (11) 

q(M-l)   =g{M-l)   -  h(l)f(N-l) 

q(M) = g(M) - h(2)f(N-l) - h(l)f(N) 

Since the values of £are  not known,  the correspondence of eq. (11) 

cannot be  made directly.    However,  by making  an assumption on the 

continuity of the original image  vector that 

and 

f(l) =  f(2) = f(3) 

f(N-2) =   f(N-l) = f(N) 

then it is found that 
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id) = -M^ 

q(2) 
_   g(2)[h(l) +  h(2)] 

where S= h(l)  + h(2) +h(3).    Similar equations   exist  for q(M-l) and 

q(M).     This procedure can be generalized  for any size vectors.    Also, 

more  complex prediction algorithms may be employed.     Figure  2 

illustrates the  expected mean square restoration error of_fT   for 

various prediction algorithms as a  function of the correlation  of elements 

of f^ under the assumption that £ is a sample  of a  Markov process with 

correlation factor P.    A first  order predictor provides a significant 

improvement over  the zero order predictor,  and for high correlation 

factors even surpasses the estimate for the  underdetermined model. 

The  efficiency of the computational algorithm is  based upon the 

use of a circulant blur operator  defined as 

C = 

h(l)      0 

h(2)     h(l) 

h(2) 

• • 

h(L) h(L-l) 

ML) 

0        o 

0 0 

0    h(3) h(2) 

• • 

h(L) . 

0 h(L) 

0     h(l)       0 

0     h(2)      h(l) 

Then,  for the noise free case,  it can be shown that 
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J-M 

^T 

0 J-R 

And hence,   the  image   estimate  may be  obtained by 

J-R 

M 

J-M 

where C^    is the generalized  inverse of C, which is also circulant.    Since, 

the two dimensional  Fourier transform of a  circulant matrix  is of 

diagonal  form,  it  becomes more  efficient to perform the computations 
2 

in the Fourier domain.     The  J    matrix operations associated with the 

pseudoinverse multiplication can then be  replaced by  J scalar multiplies 

plus 2 J   log2J  operations required  for the fast Fourier transformations. 

While  the fast pseudoinverse  algorithm generalizes  quite easily  for two 

dimensional image fields.     Application  of the technique to  image res- 

toration  is now underway. 
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4. 5    Spline Function  Image Restoration. 

Steve Hou and Harry C.   Andrews 

For  an  estimated object  the continuous   - discrete   imaging 

system model can be represented as the discrete matrix equation 

(A+YB) C (1) 

or  as 

(A   A + YB   x B  )   c = A   g (2) 

using cubic   B spline   interpolation for  the estimated   object.     In 

eqs. (1) and   (2) 

A 
Hi yy*» (C.H) S^OS^K) dcdn 

00 J 

M< (C) S        (C)  dC 
m 

3 f[/S/^Sn"   (K)dK] 

The size  of the  image is I x J  and that of the interpolating grids for the 

estimate object is M x N.    The term S  (0  denotes the one-dimensional 

cubic B spline function  centered at  grid point x    and  d^ and £ are 

column vectors of the image g.. with unknown coefficients c. . arranged 

in  a lexicographic order.    The symbol ©designates a Kronecker   (tensor 

or direct) product between two matrices [ l] .     Both matrices 
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A    ___   Ä 

T 
A = A   A 

and 

B = B,0 B 
-      -1       -2 

are real,   symmetric,  non-negative definite, and the diagonal terms 

are larger than any off-diagonal terms.     Furthermore the  entries of A 

are positive.     Making use of the following equal energy  constraint 

on the imaging system 

E E vc'H)= l 

i=i j=i 

for all C and  K , A  can be shown to  be a Markov matrix  [ l] . 

Ultilizing the   special properties of cubic B spline function one 

can  further show that 

h- 
6A" 

32-9      2     1 
-9    32-9     2   '< 

2    -9  32  -9   2 
1       2  -9  32-9 

1   *     •    • 
•     •    • 

() 

() 

•    • 

•     • 

J 
Thus   Bj   is a banded matrix of seven element wide.     Also,   B   is  a 

Toeplitz,  almost  cyclic and strictly diagonally dominant matrix with 

the properties  mentioned previously.     The matrix B7ha8 the same 

entries as B  except they may have  different size.    Hence B   and B 
1 -1-2 

are positive definite matrices [ 2] . 

Iterative methods have been  formulated for solving the unknown 

coefficients c in eq. (2).    The  matrices A and B usually have very large 

dimensions in  an image restoration problem, hence one is   fa   ed with 
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the problem of inverting a matrix of very large dimension.    It is 

known that the  number of nnultiplications in  inverting matrices grows as 

a nonlinear function  of the dimensions of the matrices being inverted. 

Therefore,   for large dimension,  matrix inversion is a non-trivial operation 

even with  a modern digital computer.     For this reason  it is assumed 

that the point spread function is   separable i. e. 

h.. (C,*) = h.(C)h.(K) (3) 

for all  C^andi.j.     Now nnatrix A becomes 

A = P 0 P 
—       —x      —y 

(4) 

where 

P 
— x / hi^ S

k<C) dC P 
-y 

/h.(H)S|(H)dH) (4) 

Then  the following iterative equation can be derived  from eq. (2) 

by making use of eq. (4). 

C(i)   =C(0)-   Y^+Bj)   C(i-l)(BzA2
+) (5) 

Where C  is the  ..-.»..rix of the unknown coefficients C      , + designates 

the pseudoinverse [3],   and 

C<0)  = P + G P + 

-x y 

T A,      =P    P — 1 ~x —x 

A_     =P    P 
-2       -y    y 

^2     '*£& 
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Work is in progress to determine the  unknown parameter Y 

(o<Y<l)   from the iteration procedure of eq. (5) and the   constrainted 

iterative   solution  of C  imposed  by  the positive restoration and equal 

energy constraints. 

References 
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4.6    Nonuniform Sampling of Observation Space 

Faramarz  Bavarian 

The fundamental model describing the image restoration pro- 

blem under the assumption of a space invariant blur function is given 
by 

f  ( o x, =  /fi (a)g(x - a)da (1) 

Here, f^a) represents an ideal image line and Mx) an observed image 

line. To restore f^a) numerically, the above integral equation may be 

discretized  as follows 

N 

(2) 

where f^j) are uniformly spaced  nodes of the quadrature  formula. 

fo(x.) are   samples of the observation  and c     are quadrature coefficients. 

Equation (2) can be represented in vector form  as 
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si, (2) 

where 

B.. = c..g(x.   - j) 

The problem of image   restoration has now been  reduced to a 

regression problem; given the   observed vector_f     and the blur matrix 

B,   a suitable e. Hmate of_f    must be found. 

If in eq. U; matrix B has full column rank (M^ N), the model 

is called overdetermined. Under the assumption of full column rank 

the pseudoinverse of B  is defined to be [ l] 

+ T     -1     T 
B   = (B   B)      B 

and the estimate  of_f    is given by 

f   =   B    f 
—I       -  —o 

Condition Number.    The  condition number  of a system is a measure 

of the affect of an input perturbation (input noise)   on the output of the 

system.    Assume that the observed  image function has been perturbed 

by observation noise by an amount of   Af .   The error in the estimate of 

f. is bounded  by [ 2 ] 

^I11 r       UAf  1 
—Ti-     s  C^ o 

k1 B   JIJ 
(3) 

where C     is the condition number of B and is given by 
B 

CB=   llBll   .    ||B 
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From inequality (3) the   importance of the condition number becomes clear. 

A larg« condition number results  in numerical unstability;   a pmali 

observation error will cause a large error in the estimation of the ideal 

image.    A linear system with relatively large condition  number is often 

called ill conditioned. 

Equally Distanced Samples of Observation.   Assume that the 

original   image is sampled at points 1,2, ...,N,     and  the sampling 

interval  has unit  length.    Suppose the   sampling period for the observed 

image is  Ax(Ax s 1) and the length of the  degrading   function is L; g(t) = 0, 

if   I t| > L/2.    The relationship between the number of observed samples 

M  and the number  of original   samples N is then  given by 

M 
N 

+   1 

For a given N  and L,   M   should be chosen to minimize the 

condition number for B.    Consider the   set of blur matrices   B     for —M 
which M  is   sequentially set equal to N, N + 1,  N + 2,    .. . , etc.  and the 

corresponding condition number is   C .    Figure 1 contains a typical 

plot of the condition number as a function  of M.    Usually the shape of 

such a condition number  curve depends on the variance of the blur 

function.    In  general, the curve does not decrease monotonically.    The 

curve assumes its peak  when M  = N,  and as M grows the curve tends to 

decrease with  some periodic  upward jumps.    The  period is related to 

Ax and the fact that for   some integer n,  nAx =k (in some cases such n 

may not exist)  where k is an   integer.    The period  of the  jumps is usually 

a function of n and N.    For very large  M,  the curve tends to increase,  bui 

the amplitude of the jumps decrease. 

One  method to improve upon the condition  number of B is non- 

equal   spacing of the observed samples.     It is clear that the middle  points 

of the   ideal image  line contribute to more points of observation than the 

points which  are closer to the   line boundary.     If the   space limited 

degradation function exists only  on an interval of  length L,   a typical 

pixel  in the middle would contribute to all the points in the observation 
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Figure 4.6-1.  Typical shape of a condition number curve. 
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image line which  lie in  an interval   of size L.     On the other hand the 

two   samples at the very ends  of_f   only contribute to  two samples at the 

end points of f  .    This simple argument suggests  that non-uniform 

sampling of observed image would bring out  all the information needed 

to  easily reconstruct  the original image. 

The ill-conditioning associated with uniform sampling of a  blurred 

image have  been examined experimentally.     In the  experimental model 

a Gaussian blur function has been employed  with 16 equally spaced ideal 

image samples on an interval of length 15, .     The  variance of the 

Gaussian blur function is unity and  its   space limited  length is 6 pixels. 

For  16 equally spaced samples of the observation, the condition 

number is about 300,000.    When the number of observation samples in- 

creases,  the condition number tends to  decrease.     For values  of M 

above   50 the condition number stays under 2,000 ,  but it  never becomes 

much  less.     As mentioned before C      is  not a  monotone function,  i.e., 

for some values of M it may increase  by increasing M.    For a   suitable 

non-uniform sampling of the  observation,  the condition number becomes 

about 2,000.    The different methods  to  find the locations of the non- 

uniform samples  are discussed  in the next section.    Note that there is 

an advantage in non-uniform sampling  with M =   N as compared to uniform 

sampling with M 2:   N,   since for the  first case it is necessary only to 
T invert matrix B   itself whereas for the second case,    B   B    must be 

inverted. 

Spacing of Non-uniform Samples.   The two  end points of the 

observation line play an important role in the sampling process; the  be- 

ginning and the end points of the observed line are essential to enable 

the system to reconstruct the object.     To simplify the explanation, 

consider the left half of the observation only.    Starting from the beginning 

of the left half  line,  call the unit distance    points  of the observation 

x1,x2,...   etc,  as shown in figure 2a. In the   same manner,  the points of 

the object line are denoted as  y^ y2, .. .  etc.     The problem then  is to 

estimate points y^y^...   etc; using  N samples of the  observed intervals. 
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object line 

observation 
line 

(a) uniform sampling 

—• •- T -• •- -• • • • • •- 

xi       x2    X3 
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-• «    object 
line 

observation line 

(b) nonuniform sampling 

Figure 4.6-2.   Relationsh'.p between object and observation 

line sampleL. 
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Interval [ x , x )  is the only  one containing  information about 
1        Ci 

[ v .v   ) .     The interval Cx., x^),  also,   contains information  about the 7r 72 12 
larger  interval [ y, y).    Now,   consider the  interval [ y, y)   .     There 

are  only two intervals of the  observed line which  can contribute  to 

the restoration of [y  ,y   } ; [x , x  )   and  [ x  , x  ) .     In the  intervai 

[y  ,y  )   ,   only[x,x),   [x  , x  ) and[x  , x  )  of the observation contain 

information  about Cy,.yJ •    This simple argument can be  generalized 

to a typical unit size interval [ y.,y.   .).     There are at moat L - 1  of the 

(L  is the length of the degrading function) observation intervals which 

could  contribute to reconstruction of [ y.,y.   ,).    The  number of intervals 

relating to [ y., y.    )  equals j   if j < L ,  and equals L - 1  if j ^   L - 1 

(assume y.  is on  the left half line).    Suppose  for every interval of the 

ideal line it is necessary to have k   samples of the observed line.    For the 

first interval [y ,y_),  all these  k samples must lie on [ x , x  ).    For the 

second interval   [ y  , y  ), half must lie on [ x , x ),   and half on [ x  , x  ). 

Likewise,  one  can consider the sample distribution for  the   'ther 

intervals. 

Figure 2b demonstrates the method.    In the table, the number 

of samples which are needed to reconstruct the corresponding ideal 

line interval i* listed before each observation interval.    Here,   16 

samples of the object line are uniformly placed on an interval of size 

15,  and the size of the degrading function is 6.    The length of the obser- 

vation line is, therefore,   15 - 6 = 9.    Three samples are placed on the 

first interval,  two on the second,  and one is placed on the third.    The 

same distribution is considered for the last three intervals.    The middle 

of the line is sampled exactly as the object line. 

Figure 3 contains a blurred picture and its restoration using the 

technique  described in this report.    The restoration is exact since it lias 

been performed in the absence of noise. 
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Observed Image Deblurred using nonuniformly 

spaced samples. 

Figure 4, 5-3.    Image reconstruction using nonuniformly 

spaced samples. 
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4. 7    Histogram Exponentiation 

Francis Kretz 

In the field of image enhancement   simple nonlinear  amplitude 

transformations are quite useful. For  example,  the technique of histo- 

gram equalization [ 1-3] has been   shown to significantly  improve the 

detail of low contrast images such  as X-ray and Earth Resources Satel- 

lite   (ERTS) pictures. 

Examination  of detailed and well-contrasted pictures reveals that 

their histograms are approximately exponential with  a black level peak. 

On the other hand poor quality images usually have a non-exponentially 

shaped histogram.    For this reason an investigation was made into methods 

of "histogram exponentiation" for image enhancement. 

Probability Density Function Transformations.   Let X denote a 

random variable whose range  is [ 0, l] ; p(x) ,  xe[ 0, l] be its probability 

density: and F   (x) represent the  distribution function assumed continuous. 

Also,   let f( •) be a  continuous monotonically  increasing  function  and 

let Y   = f(X) be an  output random variable with distribution given  by 

F  {y)=  P    { Y^yl=P    { f(x)  ^ y } 
y r r 

Since  f(» ) is invertible 

F  (y) =  P    U« rV))  = F  Cf'V)) 
y * x 
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Thus,   for a given input  distribution F  (x) and a desired output distribution 

F  (y),  it  is possible to determine the necessary transfer function  f(X). 

In the discrete case the transfer  function can only be  determined approx- 

imately.    If the transfer function is chosen such that F  (y)   is uniform 

the process is  called histogram equalization. 

Histogram Exponentiation.     In the histogram  exponentiation process 

the transfer function is selected so that the  output probability distribution 

is  of the form 

Pr(k) = A  exp[-a(k-l)} 

for k = 1, 2, . . , , M.     The parameter "a" controls the shape  of the exponential 

function.    With a^O,  the result is histogram equalization. 

Figure  1 shows the effect of histogram  equalization and exponentiation 

on an  ERTS picture.    The equalized picture  in figure 3b is   subjectively 

improved compared to the original.    And the exponentiated pictures exhibits 

further improvement. 
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Figure 4.7-1.     Earth resource picture 
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5.     Image Data Extraction Projects 

Image data extraction describes the collection of projects con- 

cerned with the detection of features within an image and methods of 

measuring these features. 
The first report describes an investigation into a method for image 

recojistruction from transverse-axial density projections of a solid object. 

The method utilizes a Fourier transform process defined on a polar raster 

which obviates the need for interpolation in the transform domain. 

A new project described in the following report is based upon the 

development of nonlinear optical processing elements.    These elements are 

constructed from halftone transparencies which are mathematically compu- 

ted and recorded by a scanning microdensitometer. 

5. 1     Fourier-Bessei Method for Transverse-Axial Reconstruction 

Dennis G.  McCaughey and Richard P.  Kruger 

Transverse Axial Reconstruction implies the reconstruction of two 

dimensional cross sectional regions of an object or signal from knowledge 

of a discrete number of one dimensional projections.    Application areas in- 

clude analysis of electron microscope imagery [l],medical transverse axial 

tomography    [z],and radar signal analysis    [3].    Algorithms for this pur- 

pose may be divided into three general categories :     Algebraic   C4],Con- 

volutional    [zLand Fourier Transform domain [l] methods.    The present 

discussion will be limited to the latter method. 

Transform Processing Techniques.     The Fourier method of reconstruction 

depends on the fact that the Fourier transform of the projection is identical 

to the corresponding central section of the Fourier transform of the density 

function [5].    When the Fourier transform operation is performed by a digi- 

tal computer,  the transform of the original density is obtained at discrete 

points in frequency space in polar coordinates.    Since few of these points will 

correspond to rectangular coordinates required for the inverse transform 

operatioi ,  interpolation is required.    Also,   since the forward or inverse dis- 

crete Fourier transform operation produces the original function at this sam- 

ple point to within the truncation errors of the machine used, ♦ it would seem 

reasonable that some, but certainly not all,  of the artifacts present in the 

* It can be shown that the forward-inverse sequence of Fourier transform 

operations produce the original function exactly at the sampling points with- 

out consideration of the sampling theorem.    However, this is not to imply 

that the sampling theorem is without importance. 
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reconstrxicted image are due to the particular interpolation process used. 

Other artifacts in the reconstructed cross-sectional image result from 

Gibbs phenomenon, high frequency components (due to edge effects) present 

in the estimated Fourier coefficients,  and possible undersampling.    While 

much has been said with regard to the sampling theorem concerning image 

degradation and resolution    [18, 19]    more effort is necessary to determine 

the relative importance of the various interpolation methods in the area of 

image degradation.    Notwithstanding the lack of knowledge concerning the 

relative importance of interpolation as an important contribution to image 

degradation,  it would seem desirable to employ an algorithm that utilize 

the Fourier coefficients directly on polar coordinates.    Crowther De Rosier 

and Klug proposed such an algorithm using the Fourier-Bessel transform 

[21 j.    Crowther et.  al.   [l6] have employed this algorithm in the recon- 

struction of images obtained in electron microscopy with reasonable  re- 

sults.    However, their format was such that projections were not obtained 

at evenly spaced angles which necessitated an interpolation process to fill 

the polar raster.    In developing an algorithm it is reasonable to assume that 

projections should be available at evenly spaced angles to avoid this inter- 

polation. 

As a basis for the analysis let F(R, 0) denote the Fourier transform 

of the projection at angle P and f(r,Cp) be the tomographic section in polar 

coordinates.    The following then results [8] 

2TT 

f(r,cp) = j j     F(R,e)exp(-2TTJrR co8(9-cp)RdRde (1) 

Note that 

cos (6-cp) r sin(6-cp-fTT/2). 

and 

exp(ja sin x) 

th 

£     Jk(a) exp (jkx) 
K = 

where Jk(a) is the k       order bessel function of the first kind.    By inserting 

these two relationships into eq. (1) and rearranging the order of summation 
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and integration it is possible to obtain 

OB ZV 00 

f{r,cp) = Vjk|       f   F{R,e)Jk(2nRr)exp(jke)RdRde exp(-jkcp) (2) 

k=-oo   •'0    ^0 

If f. (r) is defined as 

2rr  " 

fk(r) = jkf    f F(RtP)Jk(2TTRr)exp(jke)RdRdP 

it is possible to obtain the Fourie - series expression 

f(r,Cp) =y^  fk(r)exp(-j]'Cp) 

k=-«> 

(3) 

(4) 

Note that eq. (4) is indeed a Fourier series for 

1 2.TT 

I- f (r) =     I   f(r,cp)exp(jkcp)dcp 
K 2TT     * 

(5) 

If constraints to discrete angles evenly spaced over (0, 2TT) are assumed, 

eq. (4) becomes a discrete inverse Fourier transform.    Knowledge of ^(r) 

will then permit an exact reconstruction of f(r,cp) along radii equally spaced 

over (0, 2TT).    The factor F(R, 6) is in general not available for all R and 6 

since projections are available for only a discrete set of angles and because 

a DFT   on each projection produces the transform only at discrete fre- 

quencies.    Therefore F  (r, P) is the 2-D sampled form of the Fourier trans- 
s 

form F(R, G) given by 

F8(R,e): 
ZrrAR 

N 

1-1      N^ 

) 6(R.iAR.e-^)      (6) 
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where N denotes the number of projections and I represents thr n'imber 

of points in each projection. Inserting eq. (6) into eq. (3) one obtains an 

estimate of fk(r) termed ^(r) in the form of a Riemann sum 

ZTTAR   il,1   &;* Znn 4.k. 

i=0   n=0 

where i AR has been replaced by R..    The estimated reconstruction i 
then 

i   8 

f(r,cp) =   E   yr)exp(-jkcrt tk(r)exp(-jkcö (8) 
k=-oo 

Since f(r,Cf) is a spaced bounded continuous function,  F(R, 6) is an ana- 

lytic function [z] and thus eq.  (7) always exists.    Equation (7) is in 

reality rectangular integiation and if AR and 2TT/N are small,   f (r) is an 

accurate estimate of t^r).    The ability to estimate the tomographic section 

fU.cflwith f(r,cp) is thus limited only in the accuracy of the f (r).    It can 

be easily shown that eq.  (8) can be expressed as 

• 1-1     N-l 

k=0        k       i=0    n=0 

+   V*    ik.-k  ZnAR   V     V^ Zrrn 
Z^ ■1   J e,N    ^    2^F(Ri-"N~)Jk(2T:Rir)RiexPt"-Jk2TTn/N^exp(Jkcp) 

k=0 k      i=o    i=0 

(9) 

whe re 

,   2 k = 0 

i; k ^ 0 
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By similar means it can be also shown that 

1-1   N-l 

f(r,cp)= 2Re^^f-]r  ^^i'"^ JkC2TTRir)VJIPtjk2nn/N3*XP-ik<*-,T/2)] 

(10) 

i=0   n=0 

where j    is  replaced by exp [jk,n/2)L    Equation 10 can be computed by two 

fast Fourier transform operations followed by a Bessel function weighting 

operation and a final fast Fourier transform operation.    Current results 

indicate that test images can be reconstructed from 32 projections with 

64 sample points in each projection in a few seconds on a standard comput- 

er.    An example of a reconstructed disk is shown in figure 1. 

Removing the interpolation process results in not only a significant 

reduction in computing time but some insight into a quantitative measure- 

ment of the accuracy of the algorithm through eq.  (7).    Furthermore,   re- 

taining a polar format produces an algorithm with the highest resolution 

near the axis of rotation.    Upon first consideration this may seem a disad- 

vantage,  however,  a higher resolution may be obtained in a region or interest 

simply by centering the axis of scan rotation in that region.    This may result 
in the need for fewer projections. 

This investigation would seem to indicate that the Fourier-Bessel 

method has several advantages over the more conventional transform method. 

It is still nece.« sary to determine the quality of the estimate f, (r) and to de- 

velop methods io improve this estimate.    It was noted earlier that eq.(7) was 

in reality a rectangular integration formula.    A simple method to improve the 

accuracy of fk(r) would be toutilize a trapezoidal formula.    This would require 

no increase in the number or sample pointf.    Also if the projections are sam- 

pled at the Nyquist rate (implicit in any method),  it can be shown that the func- 

tion can exhibit no more than one zero crossing between tht two adjacent sam- 

ple points.    This would imply that a trapezoidal formula would be reasonably 

accurate.    The algorithm also may be extended to images of much higher res- 

olution since fast Fourier transfomn algorithms are certainly applicable to 

higher dimensionality than currently used.    The main effort would be directed 

towards calculating the Bessel functions of higher order.    No particular dif- 

ficulty is anticipated,   since sufficiently  accurate large argument approxima- 

tions are available [9] along with a recursive algorithm for small arguments 
[10]. 
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5.2        Nonlinear Optical Image Processing With Halftone Screens 

Stephen R.  Dashiell and Alexander A.Sawchuk 

Under ordinary circumstances optical image processing systems • 

are capable of performing only linear operations on input images.    There 

is a large class of nonlinear operations which could be of great value if 

they could be easily performed in an optical system.    Among these are 

homomorphic filtering [l], histogram fqualization,  level slicing, high 

intensity pass,   low intensity pass,  intensity band stop,  and others  L2]. 

Kato and Goodman [3] have successfully utilized commercially 
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available halftone screens to perform logarithmic and exponential transfer 

functions in an optical system,  thereby allowing them to filter a multipli- 

cative noise component with much greater success than if ordinary linear 

filtering had been performed. 
If diffraction orders of the halftoned image higher than the on-axis 

zero-order diffraction component are used,  and if specially made halftone 

screens are available, nonlinear transfer functions considerably more 

complex than the monotonic logarithm and exponential can be obtained. 

To understand how a non-monotonic transfer function might be ob- 

tainable,   consider first the Fourier transform of u rectangular array of 

opaque squares of side  b and center to center spacing a,  given by 

Ä    >      TT        n=-«   m=-» \      /       N        / 

(1) 

where m and n are numbers identifying the diffraction order impulses in 

the spatial frequency plane. 
The transmittance function assumed by eq.  (1) is typical of what 

would be obtained if a constant transmittance were halftoned and photo- 

copied on high contrast copy film.    The presence of the sine terms indicates 

that non-monotonic behavior could be expected.    This becomes more evident 
in the special case where a (0, 1) order specified by m = 1, n = 0 is selected. 

In this case eq.  (1) reduces to 

^(«.r)1(o.i)'-S- "»(-r)««^' y) (2) 

Inverse Fourier transforming this expression and squaring to get the out- 

put intensity yields 

(^ I 'OUT =4     -'^l '" 

as the final intensity output. 
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This result is useful because the value of b is a function of 

the input intensity to the system,  or equivalently.  is a function of the 

density of an input transparency.    In operation, the Fourier transforming 

and inverse transforming are instantaneously performed in a coherent op- 

tical parallel processor [5],  and selection of the diffraction orders is ac- 

complished by simple spatial filters.    These filters are chosen to pass the 

low spatial frequency information in the original, thus desampling the half- 
toned picture while the nonlinear operation is performed. 

To illustrate how an operation such as level slicing could be per- 

formed using this first diffraction order,  a halftone screen wa i made by 

photographing crossed Ronchi rulings.    The resulting screen had trans- 

parent squares on a partially transmitting background.    The sides of the 

squares were one-half the distance between squares.    The subject trans- 

parency was then photographed through this halftone screen,  and three dif- 

ferent regions were then present on the copy film after development.    In 

the first region,  where the subject was sufficiently dense that the copy film 

did not expose even through the clear squares,  there were no dots or  b = 0. 

In the second,  where the subject was less dense such that the copy film did 

expose through the clear squares,  but not through the darker background, 

the dot parameters were b -- a/2.    Third, where the subject was still les's 

dense such that the copy film exposed through the clear squares and through 
the background,  the parameters were b = a. 

The cases b = 0 and b = a  give IOUT = 0,  however b = a/2 yields 

^UT = a   /n     ^0.    Thus,   only the range of densities which gave dots appear 
in the output and densities above or below this range do not appear.    This has 

been experimentally verified by slicing a picture into 6 different levels,  us- 

ing a single halftone screen but varying the exposure time on the copy film. 

The position of the sliced level is controllable by varying exposure while 

the width of the level is fixed by the density difference on the screen be - 

tween the clear squares and the darker background.    This technique for ob- 

taining nonlinear transfer functions is not limited to level-slicing and other 

simple functions.    Using digitally produced halftone screens with appropri- 

ately selected density profiles,more complex operations are possible. 

Although these preliminary experiments in nonlinear processing in- 

volve photographic processing and coherent optical techniques,they are es- 

pecially well suited to applications in hybrid digital/optical systams [4]. 

Several reol-time optical input devices with adjustable parameters and 
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thresholding are now under development, and combing these with the half- 

toning operation would make possible a real-time nonlinear optical parallel 

processor.    Such a system would be relatively inexpensive and simple, and 

would avoid problems of scanning and display.    Electrically controllable 

selection of diffraction orders in the Fourier plane of the system would per- 

mit fast modification of the transfer functions.    Immediate future work will 

involve the production of several types of special halftone screens in the 

IP1 plotting microdensitometer. 
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6.     Image Analysis Projects 

The   image analysis   projects are   concerned with the back- 

ground technology necessary  to effectively design image coding,   res- 

toration,   enhancement,   and data extraction systems.     Of particular 

interest are models of the human  visual  system   for monochrome and 

color images,    and the development of quantitative measures of image 

fidelity and intelligibility. 

In  the first project the   continued   research on a   model of human 

color vision is described.     This   model is nearly completely developed 

and  tested,   with success.     The   first applications   of the model are  now 

introduced. 

The next report considers the development  of a more accurate 

model for human   monochrome vision.     This model incorporates a linear 

filtering   element before the photoreceptors   to   account for the optical 

degradations of the eye. 

6. 1   A Quantitative Model of Color Vision 

Werner Frei 

The first part of this report   summarizes recent   results of an effort 

to describe some major properties  of human color vision with a simple 

neuro-physiological model.    The second part investigates an application 

of the  model to  the optimal quantization of color image   signals. 

Neuro-physiological model.     The visual model in  question is the 

result of a broad study of the neuro-anatomy of the human eye  and 

psychophysics of  vision L 1, 2J .     Figure   1 shows a block diagram of the 

model which consists of a   layer of photoreceptors connected to a  layer 

of  summation cells.     The photoreceptors comprise three distinct classes 

corresponding  to Judd's   fundamental sensations,   with a quaii-logarithmic 

response to   light  stimulation.     Three  distinct  patterns  of connection  are 

assumed between the two layers,    such that the  output of each summation 

cell corresponds to one of three opponent  sensations "dark-light" "red- 

green" or "blue-yellow. " 
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At high intensities and moderate saturations,   the receptor 

response functions may be simplified to 

t.  =c.ln(t.) 
i       i i 

t   >0 
i 

'5) 

for t. >0.    The spaces of color tristimulus J"   and perceptual quantities 

*,   respectively,   are defined  to be  vector spaces  with algebraic law = 

of composition defined as follows 

Ta-LTB    =   'SASB'WIB'SAV 

r JLT - ity2y3)
T 

G
A-GB =  (glA+8lB'g2A+g2B'^A^SB1 

r_LL   G =(rg1,rg2, rg3) 

(6a) 

'6b) 

(6c) 

(6d) 

where T   , T   , T are the tristimulus vectors of arbitrary  colors and G 
AB y A 

GB'G are ttle corresPonding neural quantities.     The   symbol     _ denotes 

vector  addition and    H     multiplication by scalars r (real numbers).    The 

nonlinear transformation defined  by the model can  now be easily 

verified to be a   linear vector mapping of the  above vector space-^into 

1   by 

H0 N(T     _L T    ) = n©NTA  +   H© NTD A o A B 

H®  N(r _|J_ T) =   rH©NT. 

(7a) 

(7b) 

This definesa generalized law of  superposition of colored sensations. 

For example,  multiplying (  (I ) the tristimulus values of a color by 

a scalar   r au defined by eq. (6b) yields a color  appearing approximately 

r-times  as bright,   saturated,   etc. 

The  analysis of the visual response to an arbitrary  two-dimen- 
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W"   W^a^ (2c) 

where t^forj«!, 2. 3 are independent linear transformations of the 

CIE W   7X   coloT mashing functions:   X^and X^ are the limits of 

the visible spectrum. 

The mapping N describes the neural   response of the receptors, 

assumed to be a quasi-logarithmic  function of the respective  light 

energies absorbed 

t.  = c.ln (k.t    +t    ) 
i        i i i        iO (3) 

where c..  k.,  t^ are constants.    Finally the transformation H(x. y) 

represents  linear weighted   summations of the   receptor outputs in the 

lateral inhibition process. 

For simplicity three distinct shift  invariant patterns of summations 
are a ssumed.  which produce opponent neural signals g Ix.y), .j—»,/.g2(x,y) g  (x.y) 

corresponding  to "dark-light." "red-green" and "yellow-blue" perceptual 

quantities 

G(x,y)   =   Cg1(x.y).g2(x,y)g3(x,y)]T 

(4a) 

+• 

8i(x'y) =//hi(x-5'y-ri)c1
1"(t1(§,y)+ tl0)d (4b) 

r r /t7<?'Ti)+ton\ 
dpdTi 

+00 

_0D *1 10    / 

d^dn 

(4c) 

(4d) 
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The three opponent sensations form the basis of a perceptual" 

euclidian color space. In that space "brightness" is equal to the norm 

of the vector sum of the three opponent signals. 

The  pattern of connections between the two layers also predicts 

spatial contrast phenomena.     For intensities and color saturations of 

practical interest,  the spaces of color tristimulus values and  neural signals, 

respectively, are defined as algebraic   vector spaces  with distinct laws  of 

composition and a linear vector mapping  from the first into the second. 

From this,  a generalized law of superposition  of colored sensations 

is defined which enables   fast computational  procedures  to  predict the 

perception of color in complex visual fields.    The  mathematical   structure 

of the model is  now briefly outlined. 

The model defines a mapping of the retinal image space .'into a 

space of opponent neural signals-*,   with SO.x.y) c-'designating the 

spectral   energy distribution   of light striking the retina and G(x. y) e .ft 

a vector   valued "perceptual"   quantity; x.y are  geometric coordinates 

in the   retinal image plane.    The mapping  consists of a casc?ide of a 

linear (T^.  a nonlinear (N) and  a second linear 'H(x.y)) transformation 

as given  by 

G(x,y) = H(x,y)©N  TxS(\fx,y) (!) 

where© denotes the   convolution   integral.    Whenever possible,  the 

geometric coordinates (x.y) will be omitted to simplify the notation. 

The linear transformation T^ maps  the spectral energy distribution of 

light S(X) into a colorimetric tristimulus space T,    The   factor T    des- 
A 

cribes the quantum absorption  mechanism in  three types of photopic 

receptors and is defined for the   standard  observer as 

T   : S(>.x.y)-*T(x.y) 

Ts(VVt3) 

(2a) 

(2b) 
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sion«: field can now be cast,   in a first approximation,   into the frame- 

work of linear systrms analysis.    In particular,   spatial contrast ef- 

fects and resolution are predictable by a linear two-dimensional vector 

filtering ^(ju,  jv) in.*-  space 

G(x, y) s 7'  [ V(ju, jv)  Ji CNT ^(X, x, y) ] } f8) 

-1 
where ^and ^    denote the two-dimensional Fourier transformation 

and its inverse respectively,    (u, v)   are spatial frequencies in the (x,y ) 

direction and V(ju, jv) .s the Fourier transformation of the impulse response 

matrix H{x. y).    The model has been previously shown [2] to be in agreement 

with the following psychovisual factors: a) metameric color matching, b) ad- 

ditivity of luminances,   c) adaptation and simultaneous contrast.    An additional 

hypothesis allows to predict the color discrimination ability of the visual 
system. 

Quantitative Color Discrimination.  The   statistical errors of 

color matching experiments can  be approximately predicted by assuming 

that the neural signals gj.gg.gj are corrupted by independent.additive 

gaussian   random fluctuations. 

Extensive   studies of color matching  errors [ 3] have shown that 

the loci of the experimental standard deviations around fixed reference 

colors are ellipsoids in the CIE  x. y,  i-space,  with t«   logarithmic 

function of the luminance Y ;   ^.= 0. 2 loe    fYl 
10 A 

Let  the probability of confusing a color  T   =T S<X) with   some 

reference color T =   T S(X) be equal to 

p(G,^)=7kexP{-T rG-G)T(G-6)i i 

with G  =   CNT,  G = CNT. 

Under this hypothesis,  the experimental ellipsoids should cor- 

respond  to unit  diameter spheres In J-  space.    Since the modal has a 

separate  lu.-ninance channel,   luminance and  chromaticity errors can 

be considered   separately.    (Brown and   MacAdam's data [ 3] suggests 

generally small correlations   of  luminance and  chromaticity errors.) 

(9) 
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Using the simplified expressions for  g    and g    at high radiances, 

and letting k   =k    =k    =1 (see  discussion on adaption below),  the semi- 

axes of MacAdam's 2 5 ellipses were mapped intoi'- space,  adjusting 

the constants c    and c    to obtain a best fit with unit diameter  circles 

in a plane g    constant.    Table 1 shows the lengths of the  mapped 

semi-axes    ini'- space for c    =123.2  and c    =18.8.     Figure  2b shows the 

result of the  inverse operation:    unit diameter  circles in J?- space, 

g    = constant ,  maf>r<9d  into the CIE x-y chromaticity diagram.      The 

constant   c   =67.4 is determined from the average standard deviations 

of luminances reported in the same study [ 3] 

)2-o..o4(^v) 60.104A*2 
flO) 

Color Distance.   The statistical deviations of color matches 

provides  a measure  of the visual threshold  color discrimination.    Practice 

shows that Just Noticeable Differences (JND's) are approximately equal 

to three times the standard deviations [ 41 . 

According to Schrodinger's hypothesis [4] the perceptual differ- 

ence  | ÄB | between two arbitrary colors A and C can br determined 

as the smallest number of JND's separating the two  colors 

AB ■(+/•) (11) 

where dS is a line element and the path cf integration is a geodesic line 

[4]. 

Under the  assumption of neural channels perturbed by independent 

random fluctuations,  a line   element can be derived from the present 

model 
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Figure b. 1-2.    Visual color discrimination 
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dS i^i^n 
2±     2        2 

•c.  +   c_ + c 

tii^-Kvfc) ■■'• (vÄ^r- 

-■[(■*-)'^-tö-r-n' 
and 

r dt 
dS' •    ' 

'12a) 

2c3 2c2 

■^VV(k2Vt20)dt,dt2"'V1v'k2t2 + t20)dt:dti]' "^ 

and,   at high radiances,   approximately 

Two particular cases are of interest,   namely the   line elements for 

constant luminance and achromatic  differences respectively 

dS,Y.(   .;       i    I     i.     f I '^     ■    I   t      .    -        I ^ 1 )..M. 

achromatic      k t ' I2e) 

Equation   (12e) shows that the   model is consistent   with Weber's law. 

Examination   of eq.   (I2a)   reveals  that the geodesies are straight 

lines in-*-   space.    The measure of perceptual   color d fference thus 

reduces to a simple euclidian metric 

'8- 
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,iBl=i-yds=-L[(o T 
Gc, r (13) 

The i" -  space can  therefore be called an approximately euclidean color 

representation space. 

Brightness,   Lines of Constant Hue  and Saturation. Assume that 

the rensation of brightness produced by a color A   is  proportional to 

the perceptual difference between that color  and black.     Brightness is 

then proportional  to the norm of G 

B~,C^CA)' 14) 

The failure of brightness additivity   in color mixtures then  derives 

immediately from Schwartz's    inequality 

^^'W^V^'V^c '15) 

The model therefore predicts   that the brightness  of color mixture»   i« 

always smaller or equal to the sum of the component's brightnesses. 

Schrodinger1 s hypothesis [ 4] that colors of constant saturation 

lie on geodesic circles with constant luminance will now be   explored. 

In ^ -  space,   such geodesies are ordinary circles in a plane g    = constant 

and centered at g    =g     =0.     The   shortest distanc;   from any point on 

one   circle to a point on another   circle is,  of course,   along a   straight 

line paFsing through g     -g     =0.     Radial lines in-*-  space would then, 

according to  Schrodinger,   be  projections of lines of constant hue on the 

plane   g    = constant.     Figure 3b showp a set of equidi stant concentric 

circles and radial lines in J* -  space mapped   into the   CIE x-y  diagram. 

These lines resemble very much the lines of constant  saturation,   and 

especially constant hue found   in empirical color classifications 'compare, 

for example,   with the Munsell  system   [ l] ).    It seems therefore that 

the perception   )f hue is governed by the ratio of the chromatic signals 

K^   and g^ and the sensation of color saturation  would derive from the 
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T 4 
norm of a vector sum [0,g2,g3)   (0,g2,g3)]?   of the same signals. 

Applications.     It has be^n shown T 5] that the use of a simple model 

of achromatic vision can improve considerably the efficiency of coding, en- 

hancement and restoration techniques of black and white images.    This is 

essentially done as follows:    let Ux,y) represent the intensity of   an image 

and M a mapping into a perceptual space (here G = H   *   NI(x, y) is a scalar 

function of I).    Image processing takes place in  J* - space and an inverse 

mapping M      is performed before displaying the processed imac/j. 

This idea has been extended to color image processing for a 

problem  only apparently trivial,   namely  the efficient quantization of 

color image signals [ 6, 7] .     A color image has been mapped   into 

J> -  space according to eqs. ( 3 )and(4 )with k.  =1,   t      =0,   h.(x,y) =1, 

i= 1, 2, 3.     The signals g , g   , g    were then quantized linearly such that each 

quantization step corresponds to approximately three times just notice- 

able differences iJND).    Accordingly,    g   was quantized with 32 levels, 

g     fourteen levels  and g    twelve levels.     The quantized signals were 

then transformed  back into red,   green and blue signals and displayed on 

a color TV   monitor.     Figure 4a   and b   show the original and quantized 

picture respectively.    Note  that artificial contouring is  almost inexistant 

despite the coarse  quantization used.     Figure 4c and 4d show the 

subjective effect of linear quantization on the signals   g    and g 

g    =cor,stant).    The boundaries of the   color diagram   is determined  by 

the primaries of the  display device,   and subjective color variations 

across the diagram are almost uniform (except   in the  neighborhood of 

the red primary which lies very   close  to the   spectrum locus).    The 

quantization of the   chromatic component, in figure 4b corresponds to that 

of  figure 4d. 
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b,2    A New  Look at  the V-'sual System  Model 

Hideo Murakami and  Ernest L.   Hall 

Study of the human visual system and visual perception is 

important in  many fields especially psychology,  anatomy,   and ph/siology; 

however,   a   knowledge of visual  perception  is a fundamental requirement 

for the designer of picture processing techniques.     In  fact,   the bnsic 

difference between the numerical  analysis of matrices and  computer 

picture processing is based on the  psychovisual concept  of a visual image. 

A new visual   system model   i? presented here.     The structure 

of the model is based on the histological and anatomical structure of tue 

human  visual system.    A detailed description of the human visual system 

may be found in [ 1-3] .    Furthermore,   the analogous optical system for 

the occular  media is well documented   [4-5] .     The currently  accepted 

spatio-temporal model is briefly presented and  was constructed  from a 

review of current   literature.     Then  the proposed visual system model 

is  presented and  the spatial and temporal   responses are explored in 

detail.    An  analysis of the combined spatio-temporal response and a 

conjecture about color response  are also described. 

Present  Spatio- Temporal Model.   An overall model of the visual 

system was  not found in the literature although   several   references 

emphasizing  the spatial and temporal   frequency characteristics   of the 

human  visual system are available.    From  a careful survey of these,   one 

may  ar" ve at  what may be calJed the "presently accepted visual system 

model.        The spatial elements of this  model consist  of a nonlinearity 

followed by  a bandpass   spatial filter.    It   should also  be noted that if 

one  assumes a retinal stimulus   image as does Stockham   [ 7] ,  the above 

elements do not conflict severely with the model proposed in this paper. 

However,  in experimental work the   stimulus image is presented to the 

occular media not to the   retina.     The shape of the nonlinearity is 

commonly taken na logarithmic although other forms  are also  found. 

The shape of the bandpass characteristics  varies from strictly low pass 

to  bandpass but generally a bandpass is used.    The temporal model   as 

well as the combined spatio-temporal   model is usually considered as a 
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nonlinearity followed by bandpass temporal or spatio-temporal filters. 

This presently accepted model or subsets of  it are described by  Corn- 

sweet [ l] ,   Davidson [ 6] ,   Robson [ 8] ,   Yasuda and  Hiwatasi [ 10] , 

etc.    This basic model has been  found useful   in several experiments; 

however,   certain  experimental difficulties especially at high spatial 

frequencies have arisen,   e.g.,   Davidson,   Cornsweet. 

The authors propose that  ignoring the occular media of the eye, 

as is done in this representation, produces a fundamental flaw  in this 

basic   model which has led to  the experimental difficulties.     Further- 

more,    it will be shown  that a new model   can be developed which  is no 

more   complex than the present model,   is based on the histological 

and  anatomical structure of the  visual system,  predicts the phyf ;olr gical 

function of the visual system,   and is useful in predicting psychophysical 

phenomena as shown by calculations and comparisons with well-known 

psychophysical measurements. 

Proposed   Visual c-stem  Model.    Perception takes  place in  the 

brain.    This non-obvious fact has been prove i by observing persons who 

completely lost their sight from damage  to the visual cortex without 

damage to any other  part of the  visual system.    Therefore,  a complete 

model of the visual system must include  models of the eye, the optic 

tract,   and the visual cortex.     Although  the state of development of a 

complete visual system model is still  in  its embryonic   stages,  the 

authors believe,   as Cornsweet states,   that "it is pleasing to consider the 

possiblity that  the human nervous system,  despite its  obvious overall 

complexity,   is really  composed of a very large number  of repetitions 

and slight variations of a few simple mechanisms"  [ll. 

A simplified functional  description of the perceptual process nay 

be  given as follows.    The stimulus imige is generated from a scene and 

transmitted  to the   image forming elements of the eyes.    These elements 

focus the image on the retinal receptors.    The   retinal neural connections 

may then perform certain processing   operations on the neural signals. 

The next element is  the neural processing performed in the optic neural 

connections from the eyes.    Cortical processing tasks include memory 

reference images,  various types of information processing,   features 
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extraction,   decisions,   or descriftions of various elements of Ihe scene. 

The results of this process may be indicated  in several ways by the 

response.     The complexity  of the perception process,   coupled with the 

desire to predict  even limited responses,   motivate the development of 

simplified models of the visual system. 

The proposed model of the visual   system is shown in block diagram 

form  in figure 1.    The stimulus   image is   represented by an image 

function.    The image forming elements   of the  eye are represented by ar 

optical filter.     The retinal receptor response is divided into two pathways, 

one  for rods and one for cones.     Each pathway contains a selective 

spectral  filter,  a low pass temporal filter,   and a  low pass spatial filter. 

These are followed by a threshold function,   a log   conversion,   and a high 

pass spatio-temporal filter.    The neural   connections   in each   channel are 

represented by a   spatial optical   filter and summations.     The neural 

processing   in the optic nerve is again   represented by a summation.    The 

transmission link to the cortex may be represented by a set of transmission 

lines.    Finally,  the cortical computations may  be modeled  as summations. 

The stage of development of the model of the  visual system is far from 

complete,  although a large amount of work has   been accomplished Ti-iz] . 

At  present,   certain  elements such as the  im-6e forming mechanisms 

can be  modeled very accurately; other elements,   for example the cortical 

computations,   are onl> modeled in a conjectural manner.    Therefore, 

one may expect to find insight,  but  not a  complete solution from the 

following description of the visual model. 

Spatial Frequency Response.    A fundamental difference between 

the "presently accepted model'and the proposed model is  the location of 

the elements which affect the spatial frequency response.    The currently ac- 

cepted model is usually represented  by a nonlinear response such as a 

logarithmetic response  followed by  a spatial  bandpass filter.     In the new 

model the first element encountered is a   spatial low pass filter,  then the 

nonlinearity and finally  a spatial high pass filter.     The consequences of 

these different configurations will now be   explored in detail. 

The spatial low pass effect before the logarithmic response in the 

new model comes from the optical   aberration caused by the lens in  the  eye 
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and  the light scatter within the retinal  tissue.     The measurement of 

this optical performance of the human eye has been investigated by several 

researchers [ 4-12] .    Despite the lack of direct access to its image 

plane at the   retina,  Gerald Westheimer and Fergus W.    Campbell L 4] 

measured the light distribution formed by the living human eye  and 

found that the line spread function of the human eye is approximately of the 

form exp ' -0. |x| ] where a depends  mainly upon the pupil diameter.    For 

a white light and pupil diameter  of 3mmta = 0. 7.    From this line spread 

function one may easily compute  the modulation transfer function.    For 

simplicity one  may assume the  one  dimensional case and calculate the 

Fourier transform H (w),  to determine the frequency response of the 

low pass  filter 

H ('D )    =  f f(x)exp{ -j ax] dx 
-00 

which results in 

2a 
H1,U" -   Z  ,2     ■ a +(ui) 

One may   see that the 3dB  down  cutoff frequency of this low pass filter 

is  approximately 6. 6 cycles/degree.    Thus,  it  can hardly  be disputed 

that anatomically,  the low pass filter modifies  all images information 

before the receptors are encountered.    However,   other  questions naturally 

arise.    Is the log-bandpass   filter equivalent to the low pass-log-high pass 

combination?    Is the low pass effect of the occular media of secondary 

importance to the low pass effect of the discrete receptor array or the 

low pass  effect of mutual receptor  excitation9    To answer  these questions 

the model of the retinal neural networks must be considered. 

Retinal Neural Networks   .    G.  G.   Fur-nan [ ll] proposed four types 

of neural   networks:     a   forward inhibition model,   a backward inhibition 

model,  a forward shunting model,   and a backward shunting model.     Four 

of these  essentially have the same  effect,   i.e.   a spatial hi ;h pass filter 
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effect.    The backward inhibition model is employed in our model and 

is explained in detail in [iJ . 

The backward  inhibition model  for two   receptors is   shown in 

figure 2.    In the figure,  the receptors have a logarithmic response 

to the incoming light intensity; thus  they correspond  to the  logarithmic 

operation in the proposed model.    In figure 3,   e. is the frequency 

at which   receptor i would produce pulses if the roceptor  i  alone were 

illuminated (the level of excitation of the receptor  i); g.   is the frequency 

of the pulse of the receptor i after the network (pulses/sec); b     is 
iJ 

the inhibitory coefficient representing  the strength of the inhibition 

that g.  exerts on  g..    If one neglects the  inhibitory threshold and the 

case when frequencies of pulses  are below inhibitory threshold,   the 

following equations hold 

a    = e    - b    ß Kl        1        12K2 

g2   =e2-b12gl- 

The general equation considering   other receptors  is 

n 

1 if^ftmtfll- g.  = e.  ->    b. .g. , 

j =1 

The equations may also be written in concise  matrix form with the 

definitions 

g = and B = 

b        b 
11       12 

b21    b22 

.    b 
In 

2n 

b  ,    b  _   .     .      .    b 
nl       nZ nn 
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Figure 6.2-2.    Backward inhibition model for two receptors. 
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With this matrix notation the above   equation will be: 

g = e - Bg 

Then 

or 

(I +B) g =   e 

g = (1+ B)"1 e 

Now assume that there is no self-inhibitory interaction and that the in- 

hibitory interaction is an exponentially decreasing function of the distance 

of the receptors 

v| a0exp{ -a |i-jl } , 
i =J 

Under this assumption 

I + B = 
V 

a^e 

aoe V 
.2a 

0 
•a 

...      a0e •na 

...  a0e -(n-l)a 

.     -{n-l)a -(n-Z)a a0e a0e   *       '     ... 

This matrix is Toplitz since all diagonal terms are equal, and fur- 

thermore  may be  interpreted as corresponding to a linear,   shift invari- 

ant system.    Thus,  this convolutional matrix has impulse response 

representation 

g(x) ={l-a0)   Mx) + a0exp(-a| x| ) 
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The   Fourier transform of the impulse response is 

2a 
G(^ = Zv (l.a0) +  ao      2      2 

a + m 

1 
Thus (I + B)      has the frequency characteristic 

H  (w) =   —— 
2(   '      G(U)) 

2        2 
a    + tu 

2    2 
2a a+2n (1-a  )(a +UJ ) 

This function represents a high pass   filter with H  (0)   =  
2 2a/N+2TTa(l-a   ) 

0 0 

and  lim    H  (w)  =-7-7; r   • 2 2n(l-a/x) 

From comparing this   function to the experimental   results of 

Davidson [ 61 it appears that suitable parameter values to use  for this 

comparison  are :   a   =0.01   and a    =   0.6. 

Davidson [6] measured  approximate modulation  transfer functions 

of the human vision at several different levels of contrast.    He called 

these  measured functions "describing functions'" to emphasize the nonlinear 

aspects of the visual system.     His  experiments showed that the  describing 

functions vary with contrast at high frequencies.     This variation has 

been attributed to the experimental  apparatus.     It has been found 

possible to  explain this variation by a simple analysis of the proposed 

model. 

Based on the hypothesis that nonlinear characteristics of the human 

visual system could be traced to a simple logarithmic transformation at 

the earlier stage,   Davidson used the stimuli  of the form, 

f(x,y)   =   f exp{ A cos(Uty)]   to present to the eye in his experiments. Where f 

is a constant; A is a  constant to measure the contrast of the signal; 

W/2n   is the spatial frequency of the signal.     The logarithm of the stimuli 
o 

will be log f + A cos (Uty),  which has a desirable form to rind the fre- 

quencv characteristics of the linear filter after the logarithmic trans- 

formation. 
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The experiment was conducted  as follows:    the contrast of the 

stimuli,   f(x, y) =f exp{Acos (üüy)] ,   and,  for each spatial frequency U), 

A was selected so that the contrasts of the two  stimulus were   seen to be 

the same.    From these aelected A's,   he  computed the describing functions 

for several  chosen standard stimuli. 

An analysis of the proposed model which predicts the variation 

of the high frequency response as a function of  contrast will now be 

reported.    For the analysis,   it was convenient to divide the system into 

two parts as shown in figure   6(a) and investigate each separately then 

combined. 

Consider the  two relevant system configurations as shown in 

figure 3(a)   and (b)   Part 1.   It   should first be noted  that the   systems are 

not equivalent.    For example,   given a system consisting   of a  log operation 

followed  by a linear filter,  another system consisting of a filter  followed 

by a log  operation  can be made   equivalent only if the second  filter 

function  is made to depend upon the input signal.    However,  for the analysis, 

it was convenient to transform the proposed configuration into the input 

dependent form to obtain the exponent-log  cancellation. 

In the analysis it was shown that the   response of the nonlinear 

combination of the spatial filter   - log  did indeed produce a variation of the 

response with the input signal contrast.    To show this fact,  the spatial 

filter - log   system was first  converted to an equivalent log -   input 

dependent spatial   filter.    The response of this   system was expressed 

analylitically and numerically approximated  to obtain the "describing 

functions."    The   results for  the low pass spatial filter and log operation 

are   shown in figure 4.     The  combined characteristic with the high pass 

filter  is shown in figure 15 and compares favorable with the experimental 

results of Davidson.    Thus,  the  variation of the describing functions at 

high spatial frequencies appears not  to be  due to experimental equipment, 

but a predictable   response of the visual system. 

The consequences of these results also  apply to   several other 

theoretical  and experimental studies of the visual   system.    For example, 

a widely used techniques in computer image  processing is   multiplicative 

filtering [ 7J .     In experimental   work  with the   log-bandpass model the 
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Figure 6.2-4.  Characteristic spatial frequency response of Part 1 of 
the proposed model showing variation with contrast of 
input. 
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contrast variation is predictable.    For example,  the   relatively low 

resolution of one    Ip/mm viewed at  40 cm corresponds to about 

7 cycles/degree and is  well above the spatial frequency at  which the 

variation is noticable.    Further  the display  of a square wave  image 

display at this frequency contains even higher frequencies due to  the 

harmonics. 

Also,  note that the  experiments such as that performed  by 

Davidson aimed at  developing a  describing function of the visual   system 

or those   conducted by Stockham which illustrated Mach band cancellation 

may easily be performed with the  new model.    Suppose that the 

visual system is represented by the cascade of a simple integrator,  a 

log nonlinearity and a differentiation.     Then to  derive a  describing 

function of the   retinal neural network  one may present a sinsoid 

f(y) = A   cos wy 

which  is processed by the inverse of the log response giving 

g (y) = exp { f(y) } = exp { A cos wy} 

and  by the inverse of the integration 

g2(y) = — g.(y) = -A w  sin(wy)   exp   { A cos wy) 

Note that the image gyiy) is now weighted in  amplitude proportionally 

to the frequency of the input.     Thus,  as the  frequency of the input is 

increased,   the amplitude of the  processed signal  is increased.    A de- 

scribing function derived in th: j manner  could  be called a  modulation 

transfer function and would vary with  the contrast of the  input signal in 

a linear  manner. 

The preprocessing required for Mach band cancellation is also 

easily derived   for this simple example.    Again starting with the image 
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f(y) =  A  cos  wy 

the first   step would be an integration to negate the effects of the neural 

connections to produce 

g (y) =     A cos (wy) dy = —    sin (wy)+ C 

Next an exponentation is required 

g2(y) = exp ( C] exp {—   sin wyl 

Finally,   a differentiation is required 

g-(y) =   exp { Cl A   sin( wy)  exp [ — sin wy] 

The 'mage g   (y) should appear to the observer without Mach bands. 

Temporal Response.     The same descrepancy between the location 

of elements responsible for the temporal frequency response in the 

currently accepted model and the  proposed model  may be noted.    In the 

usual  model the elements consists   of a nonlinearity followed by the 

temporal band-pass filter.    In the proposed  model the first element is a 

low pass temporal filter,  then the nonlinearity and the high pass   filter. 

Thei 3 is again a physiological reason  for placing the low pass 

filter before  the nonlinearity.     The temporal low pass filter arises from 

the 30 msec time required for light absorbed by the visual   receptors to 

initiate the photochemical reaction which generates the neural pulse. 

Also,  there is  again an inconsistency encountered  if one assumes the 

log-bandpass characteristic. 

If one postulates also the existence of the excitational interaction 

among  nerve cells as Yasuda  and Hiwatashi [ 10] ,  then the neural net- 

work has a band-pass characteristic.     However,  the  difficulty in this 

assumption is that,   in order to explain the temporal characteristics of 

the H. V. S. ,   one has to assume that the response time delay of the 

excitational interaction is ignored whereas that of the inhibition is con- 
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sidered.     Noticing that  the excitational interaction  and  the inhibitory 

interaction produce the spatial low-pass   effect and the high pass effect, 

respectively,   the above statement means that the low pass effect does 

not have   a time delay whereas the high pass effect does.    Since the 

low-pass filter is produced by the optical aberration  of the eye in the 

model,  the proposed model can also overcome  this difficulty. 

Combined  Spatio-Temporal Response.   Robson  [ 8] experimentally 

measured spatio-temporal frequency responses of the visual system. 

He used a 2. 5° by 2. 5° grating target in which the luminance at right angles 

to the bars was 

L  = L    [ 1 + m(co82nVy)(cos 2nft)] 

L    was kept constant at 20 cd/m    and  the value of m at subjective dis - 
0 

appearance   of  bars was  measured for different frequencies v and f. 

The inverse of that value of m was defined as the  contrast sensitivity. 

Since Robson did not vary the input contrast,  the predictable vari- 

ation  of the resultant curves at high  frequencies was  of course not ob- 

served.     However,   another interesting  fact of the proposed model may 

be  correlated with Robson's results.    This is the   separability of the 

spatio-temporal response.    As pointed out by Budrikis O J ,  If the human 

visual system  response were  product separable then the family of re- 

sponse curves  of spatial or temporal frequency with  one of the frequencies 

fixed would differ from each other by constant factors   or in the logarith- 

mic plots,  by constant displacements in the  vertical direction.    The ex- 

perimental curves  do exhibit this property except at  frequencies below 

about   5 cycles/degree and 6 cycles/second.    Note that this is  not pre- 

dicted by the log-bandpass type  model. 

It   can be shown that this effect   is predictable  from the 

proposed model.    The basic mechanism is that if the output of the  non- 

linearity is  at sufficiently high frequencies so as to be within the passband 

of the high pass spatio-temporal filter, then the effect of this high pass 

filter  is  neglibible.    In this situation the   spatio-temporal response  is 

product separable since the low pass spatial and temporal filters are 
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independent.    However,  if the output of the nonlinearity contains low 

frequency signals which are affected by the stop band of the high pass 

filters then the overall   response is not product separable since the 

high pass   spatio-temporal filters are  not independent. 

Application to Color Vision.     One possible application to color 

vision should also be mentioned.    In previous work,   a difficulty has 

been encountered in the study of  color balance  which has been   attribrced 

to different shape nonlinearities in the three color receptor channels. 

However,  it is interesting to note that a similar effect is predictable 

from the proposal  model.    It is  well known that the  lens of the eye 

produces chromatic abberation,   i. e.  different  focal   lengths are required 

for different spectral   signals.    If a  color image which may be considered 

as the sum  of red,  green and blue component images,  is observed,  each 

of the component images is seen blurred to a different extent.    Thus, 

the low pass filters in the red,  green and blue channels  in the proposed 

model,  have  different cutoff frequencies.    Even if the nonlinearities in 

the three channels were identical,   (and  it appears that there is no 

psysiological evidence to support the converse)  the overall responses in 

each channel would appear to have different nonlinearities [ 12] .    Thus 

it appears that a correction for the chromatic abberation is  essential 

for quantitative   study of color phenomena. 

References 

1. T.   N.   Cornsweet,   Visual Perception,   Academic,  New York,  N. Y., 
1970. 

2. G.   W.   Wyszecki and W.   S.   Stiles,   Colov  Science,   Concepts and 
Methods,  Quantitative Data aud Formulas,   Wiley,  New York,  N. Y. , 
1967. 

3. H.   Davson,  The Physiology  of the Eye,   Little,   Brown,  and  Co. , 
Boston,   1963. 

4. G.   Westhemier  and F.   W.   Campbell, "Light Distribution in Image 
Formed by the Living Eye," Journal of the Optical  Society of 
America,   Vol.   52,  No.   9,  pp.  1040-1045,   May 1964. 

100- 

■ - - ■ ■ ■■ ■■- ■ ■'  ■" -- 

■   .   ■    -     .   ,*^^**^^^M**^m*L* 



f  ^ ■ ll11 wimmm'mimmmmmfmmm 

5. E.   M.   Lowry and J.   J.   DePalma,  "Sine  Wave Response   of the Visual 
System,  II,  Since Wave and  Square Wave Contrast Sensitivity," 
Journal of the Optical  Society  of America,   Vol.   52,  No.   8 
August,   1961,  pp.   740-746. 

6. M.   S.   Davidson,  " Perturbation Approach to Spatial Brightness 
Interaction  in Human Vision," Journal of the  Optical Society of 
America,   Vol.   58,   1968,   pp.  1300-1309. 

7. T.  G.   Stockham,  Jr. , "Image Processing in the Context of a   Visual 
Model," Proc.   of the IEEE,  Vol,   60,  No.   7,   July,   1972,  pp.   828-1309. 

8. J.  G.   Robson,  "Spatial and Temporal Contrast - Sensitivity Functions 
of the Visual  System," Journal of the  Optical Society of America, 
Vol.   56, August,  1966, pp.   1141-1142. 

9. Z.   L.   Budrikis,  'Visual   Fidelity Criterion and Model," Proc.  of 
the IEEE,   Vol.   60,   No.   7.   July,   1972, pp.   771-779. 

10. M. Yasuda and K. Hiwatashi, "A Model of Retinal Neural Networks 
and Its Spatio-Temporal Characteristics," NHK Laboratories Note, 
Serial 116,   January,  1968. 

11. G.  G.   Furman,  "Comparison of Models  for Substructure  Shunting 
Lateral Inhibition in Receptor Neuron Fields," Kybeonetik,  Vol.   2, 
No.  6,~57-274,   1965. 

12. R.   E    Savoie,  "Bezold-Brucke  effect and Visual Nonlinearity," 
J.   of Opt.   Soc.  Amer. ,   Vol.  63,   No.  10,  Oct.  1973. 

101- 

■   . .   ■   ..-.-,     ■■   -   ■■ -:■ I  - ■■        —    -  '-  — - -        --————--- 



"7.      Image Processing Hardware and Software Projects. 

The image processing hardware and software projects are devel- 

opmental projects supportive of the image processing research. 

The hardware projects described in the first report summarize 

progress on the development of real time color image displays for the 

ARPANET.    Also included is progress on construction of the real time 

color television recorder and playback system. 

The software projects report explains the image processing soft- 

ware system being implemented for access over the ARPANET. 

7. 1     Hardware Projects 

Toyone Mayeda 

A digital color television system for display of monochrome and 

color television pictures received over the ARPANET has been implemented 

ana in operation since April,   1974.   Development is proceeding on a second 

unit whose specificatior;. are described below: 

1. Receive asynchronous digital picture information from the 

ARPANET TIP with brightness resolution up to 256 levels 

and at input rates up to 19. 2K baud. 

Include a function memory which can be used to translate the 

8 bit data words (from the refresh memory) with any desired 

transfer curve.    The function memory can be remotely pro- 

grammed from the TIP or by local switch control. 

Display a 256 x 256 eight bit image,  or a six or seven bit im- 

age and a one bit graphic overlay. 

Use an alphanumeric keyboard when available to communicate 

with the ARPANET TIP and also to generate alphanumeric 

characters on the display monitor. 

Output the monochrome video data and alphanumeric charac- 

ters in composite RF format so that it can be displayed on an/ 

TV receiver using its antenna input. 

The other major hardware project under development is a digital 

magnetic tape recorder/playback unit for transfer of real time color tele- 

vision signals to and from a PDP-10 computer.    The tape unit records the 

real time imagery in a 600 ips mode and plays the data back at a 1 and 7/8 

ips rate which is compatible with the PDP-10 channel capacity.    The inverse 

process can be performed to produce real time television signals from 

2. 

3. 

4. 

5. 
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coded computer records.    Presently,  all control and signal processing cir- 

cuitry has been designed and the high speed A/D has been delivered.    De- 

livery of the Orion high speed magnetic tape recorder is expected in Decem- 

ber,   1974. 

7.2     Software Projects 

James M.  Pepin 

The programming group has worked on several different projects in 

the last reporting period.    These projects include support of image proces- 

sing display devices,  network programming and development of an image 

processing capability under the Tenex operating system. 
The area of progress in the device support functions of the Image 

Processing Lab include work on support for the microdensitometer and im- 

plementing device routines for a PDP 11/10 acquired by the IPL.   The sup- 

port for the microdensiv>nneter has been the major area of effort as this 

device is the most complex,  from a programming point of view,  that the 

IPL has ever acquired.    The software has progressed to the point where it 

is possible to digitize and disflay data.    The effort also required that the 

programming group implement diagnostic software to enable the Optronics 

engineers to debug the device and the IPL operations group to determine 

the device's status.    The Optronics is presently controlled by the HP2100 

in the IPL.    The plan is to attach the device to a PDP 11/10 to enable the 

2100 to perform other display tasks while the Optronics is in use.    Another 

project is the development of a front-end system to the 2100 using PDP 

U/lO's to run the devices in IPL.    This tank was taken to allow more than 

one device to be in use simultaneously.    Previously,  because of device 

handshaking requirements, the 2100 had been only able to run one display 

device.    With the addition of the ll/lO's it will be possible to utilize many 

of the devices in the IPL simultaneously.    The first 11/10 system has been 

implemented and a second is on order.    This first system has been inte- 

grated into the IPL operations and is functioning in a production mode. 

The largest area cf effort has been the conversion of our comput ^r 

usage to a KI-10 thai the ECL has acquired.    At the present time the KI-10 

has just been installed and the checkout procedure of the code developed is 

just beginning.    A great deal of time has been spent designing the inter- 

faces to the HP2100 and related computers into the IPL.    The 10   is ex- 

pected to run many of the display devices with the users interactively.   It 

is foreseen that a user can have a Fortran program running on the 10 in 
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real time interacting with any device in the IPL.    This will be implemen- 

ted utilizing a PDP 11/40 that will be connected by a DL10 direct mennory 

interface to the KI-lO's memory.    The KI-10 will be running the Tenex op- 

erating system and much time has been spent familiarizing the staff with 

its operations and usage.    Most of the image processing programs that 

were implemented for the IBM 360/44 have been converted and tested us- 

ing the PDP-lO's at ISI. 

The last area that this report will discuss is the Front End    nage 

Processing System (FE1S).    This concept is to use the KI-10 as a front- 

end to the large "number crunchers" on the net.    This concept has been 

described in the previous reports and development of this has entering 

th^' early coding stages.    The staff is presently developing a set of pro- 

grenis of the IBM 360/91 at UCLA-CCN.    This is the first set of programs 

being developed for FiES and it is expected that others will follow quickly. 

The work on the language interpreter will begin shortly on the KI-10.   Also 

with the addition of the KI-10 the network handling functions will be designed 

and implemented soon. 
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8.     Image Processing Institute Facilities 

During  the past  year the  physical facilities of the USC Image 

Processing   Institute have been expanded   considerably.     The following 

sections   contain a   summary   description   of the present physical   facili- 

ties. 

The Image Processing Institute is located   in Powell Hall of 

Information   Sciences,   completed   in  Jummer 1973.     Powell Hall   is  a 

six story building   providing over   100 offices and laboratory   facilities. 

The Institute laboratories shown   in  figure 1   include individual rooms for 

digital image processing equipment,   image display and acquisition de- 

vices,   coherent optics apparatus,   and photographic processors. 

8, 1    Image Processing Laboratory 

The   Image Processing Laboratory consists of four interconnect- 

ing rooms housing   image digitization and display equipment,   a  mini- 

computer system  including terminals,   magnetic tape  units,   and  disks 

for control   of the   image processing  devices,   a well   equipped  darkroom, 

and an   optical processing  and  holography   laboratory.     The Image Pro- 

cessing Laboratory computer system   is interconnected with the Biomed- 

ical Image Processing Laboratory and  the image processing computer 

system located in the Engineering Computer Laboratory. 

Figure   2 contains a block  diagram of the Image   Processing Labora- 

tory computer/controller system.    This system consists   of a  Hewlett- 

Packard   Model   2100 digital computer  with a variety of computer peri- 

pherals accessed through an   input-output controller.    The  I/O controller 

also acts as the communciations   link with  the image  processing   com- 

puter   system of the Engineering Computer Laboratory and  the   Biomedical 

Image Processing Laboratory. 

The   Laboratory  image display  and digitization devices are listed 

in  figure 3  and shown in the photographs  of figures 4 to  6.    With these 

devices it is  possible to  digitize monochrome and color  transparencies 

ranging in size from 16mm up to full size X-rays and prints   of up  to 

8 in.   x 10 in.   in size.     Hard copy monochrome and color transparencies 

and prints can  be produced in a  wide range  of sizes  up  to   8 in.   x 10 in. 
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Figure  8-3   image processing digitization and 
display devices. 
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a)    Digital Process Room 

b)    Left Hand View of Image 
Equipment Room 

c)    Right Hand View of Imase 
Equipment Room 

Figure 8-4.    Facilities of the Digital Process Room and Imace Equipment Room 
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The IER flying spot scanner is used  to  obtain Polaroid prints 

and transparencies of images.    Resolution is up to 1024  x 1024 pixels 

with 8 bits of intensity quantization.     Scan times vary  from 10 to 60 

sec.  depending upon   resolution.     Color photographs  are obtained  by 

sequentially scanning the white CRT phosphor through color filters. 

The Muirhead color facsimile device is  a  two unit drum trans- 

mitter and receiver.    Its capabilities include 100 line/inch  resolution 

with simultaneous 8 bit/primary quantization.     The scan time  is  12 min. 

for an 8 in.   x 10 in.  print. 

The   Dicomed 14 in.   x  17 in.   X-ray and  large transparency 

scanner  is an   image dissector camera mounted  in a   light box.    It 

is  capabl-» of digitizing with 8 bits of accuracy  and a   spatial resolution 

of up to  2048 pixels. 

The  Optronics precision  flat bed   scanning microdensitometer 

scans and records 16,   35,   and 70mm  color  or  monochrome roll   film 

on a registered transport under computer control as  well  as prints or 

transparencies up to 10 inches   square.    Spatial accuracy  is +^ I micron 

with apertures as   small as 10 microns.    Photographic density or trans- 

mittance is  digitized with  12  bits and the  display is  driven by 10 bits. 

The scanning velocity is 8  inches/sec and the unit  is capable of digit- 

ization over a  0 to 4 specular density range.     Color  digitization and 

display is performed sequentially under computer control. 

Real time display of monochrome  and color digital images is 

accomplished using an Aerojet General  display device.     This device 

utilizes a standard shadow mask CRT  with 576 horizontal and 525 vertical 

lines of resolution.     A digital disk  is  included  with the  device which 

makes possible  a refresh  rate of 60 fields/second at 64 quantization 

levels for each of th«   red,  green,  and blue primaries. 

A real time display device designed to be plugged directly into 

the ARPA-TIPhas been developed by the  USC Image   Processing Institute. 

A keyboard terminal controls the   selection of imagery from the net ^o be 

displayed  on the device. 
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Figure 7 contains a block diagram nf a real time  digital color 

television recording and playback system  being developed by the  USC 

Image Processing Institute.     In this system the color signal output  of 

a television camera  or video tape recorder   is sampled  and digitized 

by three analog-to-digital converters  at  a rate compatible with U.   S. 

television standards.    The digitized signal is  then recorded  on the 

high speed Orion  Titan digital tape recorder shown in figure 8.     This 

tape recorder is capable of  recording and playing back  at rates of up to 

10   Mbs on each of 28 data tracks for a total   of 280 Mbs storage rate.     A 

single reel  of tape cyn record  over one minute of  real time television 

data at this rate.     The recorder is also capable of playing  back at a 320:1 

speed  reduction to match the  channel  rate of the   PDP-li minicomputer 

interface to the PDP-10.    In the  output mode the PDP-10 will output  images 

for recording on the  Orion at the slow rate; and the Orion will then play- 

back at its higher speed to reproduce a  reconstructed real  time tele- 

vision signal. 

8. 2   Engineering Computer Laboratory 

The Engineering Computer Laboratory   is based  upon a dual pro- 

cessor computer system shown in figure 9 consisting of Digital Equipment 

Corp.   PDP Model KI10 processor for time share computing and an IBM 

360/44 processor for moderate size batch  computing.    Both machines  are 

host computers on the ARPA  computer network.     The PDP-10 utilizes 

the TENEX  operating system while the 360/44   runs  under a USC developed 

operating   system that incorporates the VICAR   image processing software 

system developed at  the Jet Propulsion Laboratory.     The PDP-10 and 

360/44 are connected together and to the ARPANET-TIP through a 

PDP-11/40 communications controller.    The controller provides character 

manipulation for ARPANET transmission and interfacing to the University 

Computer Center IBM 370/158,  the  Image Processing Laboratory image 

digitization  and display devices  including the real  time color  TV digi- 

tizer  and recorder,   and to the Adage  AGT-10 computer graphics system. 

The  Image   Processing Institute is developing a  front end  image 

processing system (FEIS) on  the PDP-10 which will be available to any 

113. 
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image processing user  at USC or over the ARPANET.    Specifically 

FEIS will make use   of the existing ARPANET   structure on a dynamic 

basis  to  allocate  the image scanning,   number  crunching,  disp.ay,   trans- 

porting,   etc.   resources of the network for specific   image processing job 

requirements.     The system will be  transparent to the user in the sense 

that the user need not possess   intimate knowledge of resources available 

on  the  network,  nor will the  user be required to have an intimate know- 

ledge   of  existing image processing software,   protocols,   or network 

procedures.     Figure 10 indicates a brief overview of how such a system 

might   operate.    From the  figure  it is apparent that three types of infor- 

mation flow are under control of FEIS.    Naturally there would be TELNET 

,network communication) and RJE (remote job entry) command and control 

instructions in which FEIS would command large image processing jobs 

to be   run on the number crunchers of the network.    However  a typical 

user may execute his job in ANIPIL f ARPANET Image Processing 

Interpretive Language)   directly to the USC front end   system.    Finally 

image flow would be routed through the most efficient path possible to 

preserve the precious bandwidth needed for  large  image arrays  and to 

establish and minimize an archival   image storage facility for user's 

future reference. 

8. 3    Optical  Information Processing Laboratory 

As a compliment to research efforts   in digital image processing 

now being conducted  at the USC  Image Processing Institute,  an Ootical 

Information Processing Laboratory (OIPL) has  been  established  within 

the Institute and the Department of Electrical Engineering.    The  equip- 

ment available in this laboratory combined with facilities for photography 

and for digital   scanning,   computing and display which are already in 

operation provide a  unique capability  for research in the fields of optical 

and hybrid optical/digital information processing. 

The OIPL  is physically located in two rooms  on the first  floor 

of Powell Hall,  adjacent to the digital  image processing facilities.    One 

room contains  a steel topped honeycomb  optical stable table,   4' x 10' x 8" 

in size,   along with a computer-controlled  film transport and  ROSA 
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(recording optical spectrum analyzer) photodetector and data collection 

system.    This optical'digital  pattern recognition system also  includes 

a 15 mW,  He-Ne laser source,  mirrors,  collinating optics, pinhole 

spatial filter,  positioners and mounts which  can be rearranged into dif- 

ferent system configurations. 

Another room,  located at the rear of the IPI computer room,   is 

entirely devoted to general research In optical/digital processing.    The 

room  is  light-tight,   and different types of experimental arrangements 

are possible.    Three optical tables are available;   one is a  4'   x 12' x 12" 

steel-honeycomb table; the others are granite surface plate tables 

4'   x 4' x 8"   and 2' x 8' x 12".    Both granite tables  have innertube inflat- 

able suspension systems for vibration isolation   in interferometnc systems. 

The lab has both 15 mW and a 50 mW He-He coherent laser sources, 

i m and 3 m optical   rails and mounts,  and a limited  aisortment of 

positioners,   mirrors,  lenses,  flats, prisms,    rulings,   collinators and 

other  optical equipment for experimentation.    Measuring equipment in- 

cludes transmission  and reflection densitometers,  a  radiometer/photo- 

meter and an electrical shutter and timer.     Photographic facilities  for 

processing the high resolution plates and  films generally used in  optical 

systems are  now being  developed. 

All these facilities can be utilized and adapted for research in 

real-time optical/digital systems making use of fast controllable  deflectors, 

modulators,  and detectors.    Several projects   iow underway make use of 

optical masks  or screen produced digitally on IPI displays.    Although 

work in these areas   is still at an  early stage,    research at these facili- 

ties should develop the potential  of optical,   digital,   and hybrid information 

processing. 

8.4    Biomedical Image Processing  Laboratory 

The Biomedical  Image Processing   Laboratory has  been establish- 

ed  in augmentations of the Image   Processing Laboratory to provide re- 

search facilities in this specific  area of research.    Presently,  the Labora- 

tory contains an Adage Model ACT-10  computer graphics system and 
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several computer terminals connected to the TIP.    The Adage possesses 

stand-alone  graphics capability  for interactive  graphics  computing,  and 

is also connected to the IBM 3^.0/44 computer for  operations requiring 

greater computer power. 

A Recognition  Systems Incorporated computer/laser optical 

processing   system shown  in figure 11 is installed in the Laboratory.    This 

unit contains a coherent imaging apparatus that  produces a Fraunhofer 

diffraction light pattern of a photographic transparency.    The  diffraction 

pattern is sensed by an optical detector containing 64 elements that 

sample spatial frequency and  amplitude components of the  light pattern. 

The 64 outputs are then  processed by  analog circuitry and fed to the 

HI- -2100  of the Image Processing Laboratory for real time data reduction. 

Similar equipment has been used quite successfully by USC   staff members 

for photographic texture detection in the development of automatic equip- 

ment for the diagnosis of coal miner's pneumoconiosif and is  directly 

applicable to reconnaissance  and other DoD  related imagery. 
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